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Preface
This report is the first of three volumes which are the product of an analytical
and experimental investigation into the effect of a hydraulically supported,

tilting-pad, Jjournal bearing on the attenuation of noise originating from rotor

unbalance.

The study is a part of a larger program to reduce structure-borne noise
originating in high-speed rotating equipment onboard Navy vessels. The
introduction of additional flexibility at the journal bearings was proposed to
reduce noise transmission, and in the case under study the flexibility is
provided by hydraulic pistons and accumulators. In order to evaluate and
optimize the additional flexibility, this is a comprehensive investigation of
the dynamics of a rotor-bearing system and how the system behavior is affected
by the dynemic properties of both the hydrodynamic oil film and the flexible

supports.

The second volume of this study will be concerned with the force transmission of
(1) two-mass rotor bearing system and (2) uniform rotor bearing system. The
third volume will include (1) general rotor analysis and (2) experimental

correlation.

Mechanical Technology Incorporated was primarily responsible for the analytical
portion of t he investigation while Westinghouse Electric Corp. designed and

conducted the experimental test.
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ABSTRACT

A method for calculating spring and damping coefficients for the
tilting pad journal bearing is presented. The analysis includes the
effect of pad inertia. Numerical results are given in form of de-

sign curves for the centrally pivoted 4 shoe, 5 shoe, 6 shoe and 12 shoe

journal bearing. A comparison with test results is included.



RODUCTION

. This report is part of a study of the force transmitted from a rotating
shaft to its bearing pedestals where the force 1s generated by khe presence
of an unbalance in the rotor. The shaft is supported in fluid film bear-
ings and since the .fluid film possesses both flexibility and damping the re-
sulting rotor motion, and therefore the transmitted force, are directly in-
fluenced by the properties of the bearing film. Thus it is necessary to
determine the bearing stiffness and damping, expressed in terms of spring
and damping coefficients, in order to calculate the transmitted force. The
bearing spring and damping coefficients depend on the operating conditions
and the bearing configuration and have been determined for several bearing
types in a preceding investigation, see Ref. 2. In connection with the
present contilnuation of the investigation it has become necessary to examine

yet another bearing type, namely the tilting pad bearing.

References 1 and 2 show that although proper bearing design procedures can
effect a reduction in the transmitted force, bearing instability imposes

an upper limit on the attainable force attenuation. Hence, to further im-
prove the attenuation other methods must be employed. Two possibilities seem
open: a) the use of an inherently stable bearing type such as the tilting

pad bearing, or b) by vibration isolation of the bearing housing. In order to
achieve a substantial force attenuation the latter possibility must be chosen.
However, this suggests a very soft bearing support which in turn implies a
potential risk for bearing instability. Hence, from both points of view the
tilting pad journal bearing offers advantages. For these reasons an analysis
of this bearing has been undertaken and it is the purpose of the present report
to give the results of the investigation in form of design curves for the
spring and damping coefficients. A second report will deal with the force
attenuation due to the flexible bearing support.



RESULTS

Numerical calculations have been performed for four bearing geometries:
the 4-~shoe, the 5-shoe, the 6-shoe, and the 12-shoe tilting pad journal
be;ring. All four configurations have centrally pivoted pads. The re-
sults are given in form of graphs, Figs. 1 to 19, where the spring and
demping coefficients are given as functions of the bearing Sommerfeld

number. The following factors are investigated:

a) bearing length-to-diameter ratio

b) the direction of the static load

¢) the inertia of the shoes

d) the preload of the bearing (for vertical rotors)

The results are given in dimensionless form:
CK CK

dimensionless spring coefficient: XX Yy
W W

dimensionless damping coefficient: Cmcxx s Cuc
W W

Sommerfeld Number: S = EgDL.(%)Z

where:
c - Pad radius of curvature minus journal radius, inch
W - Bearing reaction, lbs.
D = Journal diameter, inch
R - Journal radius, inch
L - Bearing length, inch
" - Lubricant viscosity, lbs.seclin?
N - Rotational speed, RPS
w - 2nN, angular speed, rad/sec.
KXx’Kyy - Spring coefficients, lbs/in.
c__,C - Damping coefficients, lbs.sec/in.

XX° yy



Figures 1 to 12 are intended as design curves for horizontal rotors.

They cover the three most commonly used bearing geometries for three

values of the L/D-ratio. The first 9 graphs have the static load direc~
tion between the bottom pads whereas for the next 3 graphs the load vector
passes through the pivot of the bottom pad., Since the bearing geometries

are symmetric about the vertical load line and shoe inertia is neglected

the cross-coupling spring and damp coefficients vanish. Furthermore, for

the 4-shoe bearing there is also symmetry around a horizontal line such that
coefficients in the horizontal and the vertical direction are identical, i.e.
K_= Kyy and Cxx = ny. This does not hold for the 5-shoe and the 6-shoe

XX
bearing.

On each graph is shown a curve labeled 'Critical Mass'. It gives the value
of the pad inertia necessary to incur resonance of the pad motion, resonance
being defined by a 90 degree phase angle between journal and pad motion (or
in other words, at resonance the phase angle between a zero-inertia pad and

a pad with a "critical mass' is 90 degrees). Hence, for a particular bearing

design the value of the dimensionless "pad mass" can be calculated:
dimensionless mass = . E—

R, 2) 2
(uDL(C) )

where:

I 1bs sec2
= R2 equivalent pad mass, in.

= Transverse mass moment of inertia of pad, lbs.in.sec2
= Pad radius, inch.

Bearing reaction, lbs.

= Journal diameter, inch

= Journal radius, inch

= Bearing length, inch

= Pad clearance, inch

T Oopr®o R @~ X
]

= Lubricant viscosity, 1bs.sec/in?

Entering the appropriate graph with this value the corresponding 'critical

Sommerfeld number, and, therefore, the resonant speed, can be determined,

-4-



Figures 13 to 16 illustrate the effect of pad inertia on the spring and
damping coefficients for a particular bearing geometry, namely the 4-shoe
bearing, L/D = .75, with the load passing between the two bottom pads.

The calculations are performed for six walues of the dimensionless pad mass.
Since the pads are given inertia the cross-coupling terms no longer vanish

as for Figs. 1 to 12,

Figures 17 to 19 apply to a vertical rotor with zero bearing eccentricity
ratio. In order to have stiffness the bearing must be preloaded. The pre-
load is defined by:

Preload = (1 - C;C)

where:

C = difference between radius of curvature of
pad and journal radiua, inch.

c! = difference between radius of pivot point

circle and journal radius; inch.

Hence, C;C = 1 corresponds to no preload whereas C;C = 0 means that the

journal touches the pad.

Since the bearing reaction W is zero for a vertical rotor the coefficients
must be made dimensionless in a form different from the horizontal rotor
results., The following form is chosen:

K
dimensionless spring coefficient =
R, 3

WNL ()

vertical wC

rotor dimensionless damping coefficient = XX

WNL ()
M
dimensionless critical mass = _____N__cri; -

HL(G)
where the symbols are defined above. Note, that for a vertical rotor

K =K andC =C .
XX vy XX Yy



All the given results are based on partial arc fluid film force deri-
vative computed by finite difference calculations on a computer using
program PNOQ91, Appendix C. Fluid film rupture is included. Each
partial arc (in total 10) is calculated for 8 eccentricity ratios: ¢ =.01,

.1, .2, .35, .5, .65, .8 and ,95. A summary of the derivatives is given
in Table 1.



SCUSSION OF RESULTS

A comparison between calculated and measured results is shown in Figs.

20 and 21. The test results are taken from Ref. 4. Even if Ref. 4

gives experimental data for values of the Sommerfeld number ranging from

0 to 16, Ref. 5 indicates that the actual measurements are limited to a
range from .15 to 1.2 and that outside this range extrapolation has been
used. Based on these considerations the agreement seems reasonably good
within the normal range of bearing operation. It should also be noted that
the test measurements are obtained with vibration amplitudes of up to 50
percent of the minimum film thickness whereas the theoretical calculations

assume very small amplitudes.

The most unusual aspect of the theoretical results is the sudden loss of
bearing stiffness when approaching pad resonance. However, the effect

may be less drastic than shown. Since at resonance the "critical mass"

is zero the effect of pad inertia cannot be neglected. Then Figs. 13 to 16
show that the cross-coupling terms become important. Hence, the overall co-
efficient may not be zero (see Eq. (10), Ref. 1). Pad resonance occurs in

general at high Sommerfeld numbers where the eccentricity ratio is small and

thus, the out-of-phase between pad and journal motion may not be too serious.

In addition the fluid film damping is large.

Finally, it should be noted that the fluid film force calculations include
film rupture. When the bearing is flooded with oil the film can sustain
pressures below the ambient and rupture does not take place. Instead the
film may cavitate. Therefore, if the present results are applied to the
calculation of a flooded bearing there may be minor errors at low Sommer-

feld numbers.



NUMERICAL EXAMPLE

Let a bearing have a diameter D = 6 inch and length L = 3 inch, i. e.,
L/D =.5. The radial pad clearance is C = .0045 inch and the pad center
coincides with the bearing center so that there is no preload. The
speed is 3600 RPM, i.e., N = 60 RPS, and the corresponding oil viscosity
is 14 centipoise, 1.e., 0 = 2.0 10-6
action W = 4,000 1bs. the Sommerfeld number becomes S = .244. When the

1bs.sec/in>. With a bearing re-

load is between the pads and pad inertia is neglected the dynamic co-
efficients for the 4-shoe bearing are obtained from Fig. 7.

CK_. 6
XX - 1.15 K = 1,02 - 10° 1bs/inch
w XX
Cuxk
XX - 5.4 C = 12,700 lbs.sec/inch
w XX

The dimensionless critical mass is 5.25 ° 10-3 which gives a critical
pad mass moment of inertia I = .69 lbs. in.secz. This corresponds approxi-
mately to a shoe weight of 180 lbs. which is much larger than the actual
weight. Hence, there is no danger of resonance. For a 6-shoe bearing the
results are obtained from Fig. 2 as:

6 6

K. = 4.3 + 10" 1lbs/inch K _=1.4 10
XX yy

C._ = 10,400 1bs.sec/inch C___ = 3,400 lbs.sec/inch
XX yy

1bs/inch

critical pad moment of inertia = 18.5 lbs.in.sec2
corresponding to a shoe weight of 12,500 1bs.



DISCUSSION OF ANALYSIS

The theoretical equation governing the fluid film behavior is the well-
known Reynolds equation. Due to its complexity it is normally solved
numerically on a computer and the resulting force is a non-linear function
of the eccentricity ratio and the journal center velocity. For an exact
solution Reynolds equation should be solved simultaneously with the equa-
tion of motion for the rotor, leading to quite involved calculations.

For practical purposes it is convenient instead to assume that the rotor
amplitude is sufficiently small to allow replacing the fluid film forces
by their gradients around the steady state operating eccentricity. Thus,
the forces become proportional to the vibratory amplitude and velocity,
the coefficients for proportionality being denoted spring and damping
coefficients. Introducing an x-y-coordinate system the fluid film forces

can be written as:

-Kxxx.- Cxxx B nyy B nyy
K x~C x-K = C .y

y yx yx Yyy Yyy

F
X

F

such that there are 4 spring coefficients and 4 damping coefficients.

For a fixed pad the spring and damping coefficients can be computed from
the gradients of the fluid film force as shown in the Analysis Section or
in Refs. 1, 2, 3 and 6. The gradients are obtained by numerical differen-

tiation of computer results.

The analysis of the tilting pad bearing assumes the spring and damping
coefficients for the fixed pad to be known. Thus, for an arbitrary rotor
motion it becomes possible to establish the equation of motion for the pad
itself, including the inertia of the pad. Coupling this equation with the
above equations for the fluid film force yields the spring and damping co-
efficients for the tilting pad. A summation over all pads results in the

combined spring and damping coefficients for the complete tilting pad journal

bearing.



ANALYSIS
Steady State Equilbrium

Referring to Fig. 22, let the center of the tilting pad bearing be OB'
The bearing is made up of a number of tilting pads, the arbitrary pad
having the pivot point P located in an angle 'W from the vertical load
line. The pad is free to tilt around the pivot point which for conven-
ience is assumed to be located on the surface of the pad. The steady
state position of the journal center is O:, which is the origin of two
fixed coordinate systems: the x-y-system (x-axis vertical downward,
y-axis horizontal) and the g-orsystem (the ;'-axis passing through the
pivot point). The location of OJ with respect to the bearing center

is given by the eccentricity 0503 =€, = (&, and the attitude angle ¢,.
The steady state position of the pad center is designated 0,, such that
the journal center eccentricity with respect to the pad is determined
by 0,.0,=e=Ce . The corresponding attitude angle is { . The
journal radius is R, the radius of the pad is 0,, P=R+C and the
radius of the circle passing through all pivot points with center in OB

is OB P= R+C’.

The point O,,a is the pad center with no tilting. Hence, 0.,. O,, is a
circular arc, or for small motions, a line perpendicular to 0,,,P.

Projecting OJ on 0..,P yields:
Cl
(1) ecosP=1- ¢ —¢cos(Y-0,)

This equation contains three unknowns,namely €, ¢ and (P., since &, isx\
the independent variable., The second equation derives from the requirement
that the force on the pad passes through the pivot point which establishes

a relationship between € and (P (i.e. the journal center locus with re-
spect to the pad). The third relationship is the requirement that the total
horizontal force component (in the y-direction), summed over all pads, is
zero:

(2) “% Fsmw =0

pads

[PPSR
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Eq. (2) is usually used to determine ¢. by trial-and-error as !
follows: for a particular case Eo, g and ‘(r are known in Eq.(l). !
For several assumed values of % calculate ecoqu for each pad,

determine the pad forces F from available pad data and plot ZFSMW

as a function of (f, . The zero-point: determines the desired value

of (X

This procedure is at best tedious. It becomes very complicated if

the pivot point is not in the center of the pad in which case the

pad force F can be a multivalued function of E(OS(P. However, when the
pivot points are located symmetrically with respect to the vertical
load line through the bearing center 05 then ﬂ, =0 . A further
simplification arises when the pivot point is in the center of the

pad since the pad force F then is uniquely determined by E(os¢.

These two conditions apply to all the numerical calculations in the
present report but is not a necessary assumption for the analysis to be
valid. The analysis requires only that g and Q are known for each pad.
How these values have been arrived at is immaterial in so far as the

analysis is concerned.

Fixed Pad Coefficients

In order to determine the spring and damping coefficients for the complete
tilting pad bearing it is necessary to know the forces and their deri-
vatives for each pad as if the pad was fixed. Under steady state condi-
tions the journal center has the eccentricity ratio £ and the attitude
angle ? with respect to the pad center. The fluid film pad force has
the components FI and F,., and under steady state conditions the re-
sultant force passes through the pivot point, i.e. F; =-F and F,," = 0,
see Fig. 22, Thus F denotes the load on the pad. Usually the force is
resolved along the radial and the tangential directions with the components
F_ and F_, respectively, see Fig. 22. Hence:

Fg -F os@  sin@ F
(3) = =

F,.’ 0 Sih(f —Cos(? Ft



For an infinitessimal small motion around the steady state position

the dynamic forces become from Eq. (3):

}_-{(osq? Sinq'}{ dﬁ."'ﬁd‘?}
sin@ -cos(P dFt— F dg

The infinitessimal dynamic motion of the journal center is described

(4)

dF,

by the coordinates ( f)7 ):

§= ol(ems(?)

or

{de
(5)
ed?

} N { cosf
=~Sinf

Sin?
Cosq?

nI:d(esfh(}’)

|

|

The velocities transform similiarly:

de
(6 { .
edg

_ {tosq’
) =Sing

the dynamic amplitudes.

sinQ
COSQ

Jf}
i

The dynamic force components dFr and dFt may be expressed in terms of

From Reynolds equation it can be shown that the

fluid film force F can be written (Refs. 1,2):

™ Fera(i-28)-#(e0 EVir-2)

where:

(8) A= %%(%)z

9) = g'-P

(10) 5= '&!;:—'D—L %‘)1 (Pad Sommerfeld Number)
Therefore:

(11) dF=Aw{(I-2£)[3‘){de +% dg +gg/%’(,j®j d(%[) ]— i—g ed(f’}

-13-

A



Now:

d(—%) g A&+ ,w Lo d(8) = d(f)

because at the equilibrium position E q> O . Hence, Eq.(l1l)

reduces to:
A
(12) dF=- {ide‘*'swedq?*'wn'de a"é-edtp}

Eq.(12) applies to both Fr and Ft' Let the corresponding dimensionless
forces be denoted fr and ft as defined by Eq. (7). Thus, by substitution
of Eq. (12) into Eq. (4):

: g (% ft o _ 2 .
df r (eop € || de
) { f}=-tl/\w{cosq) sm‘?] e \edp N éaé' €

1
. o [k _f& w
JE7 Sinf  -cosp % ({5; 'g) edf {

Define the fixed pads spring and damping coefficients by:

dFy = K E = G~ My =y

dRy = =Ky § ’Cvsf."‘%”l‘cw";

To determine the 8 coefficients, substitute Eq. (5) and (6) into Eq.(l3)

Q.

de

(14)

and collect the terms in accordance with Eq.(l4) to get:
as) Ky ™ C)‘w[ CosP = edtp in'f ~ (s:cW € )(“PS'"¢'45'"¢]
cos'P + d_E,L wsPsing — Sm(P]

(16) w('”'-'é')w[
fr £
an k,féxw[;i,(, g+ g2 sm’v+(%% + 52 >(os¢sm¢+ & asf |

£ of,
a9 Ky =%Xw[*§g‘ Cos' — fa 5‘”4’+(ed¢ o) osPsing + —55m¢]
5 ¢
L)
C

(20) wa,§= ‘°[5'§)“’5‘P d—(g)ms(psmq’ L"s:nﬂ



sin'g + (-g%, = J¢ )cos¢s.n¢ - £’ cos(P]
(osq']

of;
(21) K'y éX[‘{J’ColP"'
£,

o .
(22) wCﬂ'—'CL [a‘(i) sintQ = f(-g) cossing +

where:
il §
(23) ‘FE = S'
(24) 47 =0
(25) trw=¢FS,

and all forces and derivatives are calculed for the given steady state

position, defined by €.

Tilting Pad Coefficients

Referring to Fig. 22, 0 is the steady state position of the pad center.

Under dynamic load the pad center oscillates around 0 with the amplitude
Mp such that ”IP/RP
(R is the distance from the actual pad pivot to the pad center). The

represents the dynamic tilting angle of the pad

moment on the pad from the fluid film pressure is Rp dfa Therefore,

if the mass moment of inertia of the pad is I the equation of motion becomes:
I %: = ~RedF,

or

(26) R e = M~ = —d

where:

(27) M= 1



Thus, under dynamic conditions 0) should be replaced by (/7-7‘,) in
Eq. (14). 1In order to eliminate /»" substitute the expression for dF7
into Eq. (26):

(28) My = KopF +Capf + Kol =mp) + Co (43,

Let the dynamic motion of the journal center around the steady state

position be harmonic:

(29) (§,f7)e"“’t
Hence, solve Eq. (28):

__ (G +inGelE+ Moty _ _ : 2 .
(30)  M="p ~ Wy = Mat +{wCam, B [(k..ﬁﬂm(“)f‘*‘f'?w '7] (P"Q)
where:

_ k%@'-hqa}
(31) P= (h’n,.,‘Mw’,z'!- (wcm)z

_ (Oqu
(32) 9- (k,.n-Mw‘)'+ (w(.'qa,)z

Thus, replacing " by (/7-/7,;) Eq. (14) becomes:
" dF;=—(l(f';+iwa;)f -(k}fqﬂw%)q
dFy = = (Kye +iwCyp) § = (Ko * iwCyy)y

/ ,
where K!S )C§§ etc, are the spring and damping coefficients for the
tilting pad and given by:

39) 0 Cyp =y (phyy+ 4Cry) ol +(ghgypeoya) Koy

(36) k;,., = —Mw‘(PKh-o-gw.Ch)

«15-
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@ = Mgy =puy)
o) HKap =~ Mw(plap+quwy)

(39) W Ciﬂ = Muq Kag ~pw Gy )

(40) == Mu(pKyn +galyy) =~ Mot (1+pMw?)
(41) “”C'ﬁ")z Mw(q Koy —pwCyq) = (Mw’)zq,

: Y
If the pad has no inertia, i.e. M=0 , only kﬂ' and wCH remain

as would be expected.

Bearing Spring and Damping Coefficients

Having determined the spring and damping coefficients for the individual
tilting pads it remains to combine them into the overall bearing co-
efficients. The coordinate system for the bearing is the x-y-system,

see Fig., 22, with the coordinate transformation:

|3 ] cosY sinY ) [x
(42) = — f

m -simY cosV | y
3 dF, __ j cosY —SinY | df‘}

dF, siny  cosy ) (dF,

where de and dFy are the dynamic forces measured in the x-y-system.
The bearing spring and damping coefficients are defined by:
dF;(‘—"K"X" ngx— kk’(\, = Cx,é
(44)
dFy=~Kox = CpX = Kyy y = Cyy g
Thus, substituting Eq. (42) and (43) into Eq. (33) and grouping terms
in accordance with Eq. (44) yields:

ws) K= Kyp oY +Hny sin*Y —(Kp, tHap) cosy siny



(46)

(47)

(48)

(49)

(50)

(51)

(52)

-17-

wC,, = wC;f cos™lY +wC” sin* Y —(wC;,, +tuC.:"-) cosY sin¥

kx"‘ K;,.) s - k':lf sint Y + (K;-}.-K.;.,)(MWSMV

w Cm’ = wC;.ﬁ Cos* Y -w C,;r sin*VY +(wC;}-—w Cf”) CosYsinyY

Ky Wy cos'P ~Kin ity + (h’;f ~Kaa) S SinY

wG’x: wd»,}- o'V _wC;.7 Sin* Y + (A)CI“ —QC,IT.,)(OSI, Sin Y

k’;’= K;:'o’ COSIW + K;f Si"\tv + (K;").’.K%I) CDSV SI‘ﬂW

wCyy= Wl oY+ @ (g sin™ Y + (0 Gy + 0 (o) s siny

A summation over all the pads making up the bearing gives the bearing

spring and damping coefficients. If the pads have no inertia the

equations simplify to:

(54)

K., = Ké; os*V WGy = coC;.f os" Y
kx, = K‘]X = K'ff COSWSI‘NV (U(k, < wc,x = QC;T Cosw th]r
Kyy =Kpy sin'Y wCyy= W Cpp sin*Y

Thus, for symmetry around the x-axis and no pad inertia the cross-

coupling terms disappear.

Pad Motion

The pad motion is given by Eq.(30) which can also be written:

(55)

- (K-,Iﬂ'wC“)f-r(m,w (W an,)q
0]' l’(ﬂq‘Mwl‘.‘ le"a)

Let Mo="p for M = 0, i.e. for no pad inertia:

(56)

Kae + it C
- + AT WANF
"}o ,7 an,'h’wc‘)n, f



Then:
Ky + i Mt
% = k] 1 = |+ = |+pMuw? = {a Mt
GN AT e Meriaty T iy, I+ pMa - ig M
or.:

(58) I%%l =‘/ (l+pMa?) + (g Mus)’

- - ngl - - (A)C',’ M(O.L )
(59) arg(»;,)- arq (’7,) tan ' (HPMN") 'tan' (K*n (Kq.,-'Mw")-f- (w(-”)z

Eq. (58) gives the amplitude ratio, i.e. the magnification factor, and
Eq. (59) gives the phase angle lag with respect to a inertialess pad.
Thus the two equations indicate how well the pad follows the shaft motion.
The phase angle becomes 90° when:

1 1
mn + (C\) C‘i‘i)

Koy

(60) Mee W° =

Hence, if the pad mass satisfies Eq. (60) there will be a resonance of the

pad motion.

It is convenient to use Eq.(60) to establish a value for M, designated the

critical mass. In dimensionless fonszq. (60) may be written:
Cck CewCan)?
CZVVP4¢ﬁf - J ( Va ) 4-( %L )
(61) D 212 — 41‘-25 CK
[ DL (8F] Lo

where S is the bearing Sommerfeld number.
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CONCLUSIONS

1.

An analytical method has been established for calculating the
spring and damping coefficients of the tilting pad journal bearing.
The coefficients can be used directly in computing the critical

speed, the response and the transmitted force of a rotor.

Numerical results for several bearing configurations have been
obtained and are presented in form of design curves. A comparison

with test results shows fair agreement.

The results indicate a sudden reduction in stiffness when approach-
ing resonance of the pad motion. The implications of this behavior

have not been assessed.



RECOMMENDATIONS

1.

Since the force attentuation obtainable with a tilting pad journal
bearing is not necessarily limited by oil whip, a study should be
undertaken on how to optimize the attenuation by a proper choice

of bearing dimensions, notably the clearance.

The present analysis considers the motion of the shoes around an axial
axis, i.e. the '"rolling'" of the shoes, &' more complete investigation

should incorporate both '"pitch" and "yaw'" of the shoe.

Although a tilting pad journal bearing is considered "inherently stable"
this holds true only in the idealized case where the shoes have no inertia
and the pivots are frictionless. Hence, the stability limit of a tilting

pad bearing should be studied, especially the stability of the shoe motion.
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APPENDIX A

Computer Program PNOO78: Spring and Damping Coefficients for the
Tilting Pad Jourpnal Bearing

The program calculates the spring and damping coefficients for the
tilting pad journal bearing based on the analysis given in this report.
The input to the program consists of the partial arc bearing forces

and force derivatives, the position of the pads and the steady state
bearing eccentricity ratio. The forces and their derivatives can be
obtained from PN0091, Appendix C, and ddta reduced by PNO131l, Appendix B.
The output from the latter program serves directly as input to PNO0O78.

Input Data

The program is written for the IBM 1620 computer, 40K memory storage,

with input and output on punched cards.

Card 1 and 2

Descriptive text, Col., 2 to 52

Caxd 3
7 (I5)

Word 1 (NP) gives the number of pads. NP £ 12

Word 2 (NEB) gives the number of bearing eccentricity ratios for which
calculations are performed. There is no upper limit on NEB.

Word 3 (NM) gives the number of calculations performed for each bearing
eccentricity ratio with different values of the pad inertia. The maxi-
mum value of NM is 12. If the pad inertia is neglected, set NM = 1,
Word 4 (NF) controls the meaning of the input items fr and ft in the pad
data (fr = radial force component, ft = tangential force component).

If NF = 0, then the input value for fr is the pad Sommerfeld number and
the input value for ft is the horizontal pad force f, (usually f, = 0).

L NF # 0, then (£), =fand (£); .. = f.

~23-



Word 5 (MC) controls the way in which the pad inertia date is given

as input. If MC= -1, each pad will be given its own inertia. If MC = O,
each pad has zero inertia. If MC = +1, all the pads have the same in-
ertia.

Word 6 (MS) controls the form in which the pad inertia is made dimensionless

in the input. Denote the input value M. Then:
2
i MS=-I =L wr
MN?
/3
-1 MN . _MWC
© S W [uDL(ET

Xt X

if MS=0
if MS=+|

X

where:
Radial pad clearance, inch
Journal diameter, inch

Bearing length, inch

H oo O

Mass moment of inertia of pad,around
longitudinal axis, lbs-in-sec

= I/Rz,equivalent pad mass, lbs-secz/in.
Rotational speed, RPS

Journal radius, inch

= LNDL (%)2, overall bearing Sommerfeld Number

w
Total bearing reaction, lbs.

T E o Wz X

Lubricant viscosity, lbs-sec/in?

In general it is convenient to use the last form of ﬁ (i.e. for MS = +1)
since it is independent of speed.

Word 7 (NPR). If NPR = 1, the output includes the calculated values of
the pad spring and damping coefficients in addition to the overall bear-
ing coefficients. If NPR = O, the pad coefficients are not given, only
the bearing coefficients.

List of Pad Position Angles
4 - (E15.D

This input list defines the position of the pads by means of the angle ]P
measured from the vertical to the pivept point of the pad (See Fig.22).
1V 1s measured in degrees. There must be NP-values (word 1, card 3),

4 values per card.
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List of Equivalent Pad Masses if MC = +1
4(E15.7)

This input list is used when it is desired to study the effect of pad

inertia in the calculations and all pads have identical inertia. This
form of the input list can only be supplied when MC=+1 (word 5, card 3).
The pad inertia is given in form of the dimensionless equivalent pad
mass.M. The definition of M depends on the value of MS (word 6, card 3).
The input list must contain as many values of M as given by NM (word 3,
card 3), 4 values per card. Thus it is possible to obtain the dynamic

bearing coefficients as functions of the pad inertia.

List of Pad Forces and Derivatives

The spring and damping coefficients are calculated from the pad forces

and their derivatives. These quantities can be computed by means of

PNOO91, Appendix C, and data-reduced by program PNO131l, Appendix B.

The output cards from PNOl31l can be used directly to make up the present
input list. The input list consists of a number of sets of complete bearing
data, identified by a bearing eccentricity ratio. There are as many sets

as given by NEB (word 2, card 3). Each set comprises the forces and their

derivatives for each pad. To illustrate:

Card 1 (3(E15.7) ) & % Ck
Card 2a (4(E15.7) ) E ¢ £ 4
lst Pad f
Card 3a (4(E15.7) ) af'/“. at/"i aé/f"‘? ¥/eap
st Card 4a (4(E15.7) ) H/acé) oft/yk)
€O
Card 2b (4(E15.7) ) & o £ &
2nd Pad
last pad
Card 4x (4(E15.7) )
card 1 (3(E15.7) )
2nd Card 2 (4(E15.7) )

€, lst Pad
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where €o = bearing eccentricity ratio, see Fig. 22
¢L = bearing attitude angle, degrees, see Fig. 22
/
C/C = ratio of pivot circle clearance to pad clearance

£ = pad eccentricity ratio, see Fig.22

Q = pad attitude angle

ﬁ. = dimensionless radial force component

ﬂ = dimensionless tangential force component
w = angular speed of journal, rad/sec

"Card 1" above is actually not used by the program in the calculations.
It serves only the purpose of identification. Furthermore, it should be

noted that € cannot be zero since the calculations include fr/e and ft/e.

List of Equivalent Pad Masses if MC = -1

4(E15.7)

This input is used when the pads have different inertia. This form of
the input list can only be supplied when MC=-1 (word 5, card 3). The
pad inertia is given in the form of the dimensionless equivalent pad
mass M as defined through the value of MS (word 6, Card 3). An input
list must be given for each bearing eccentricity ratio, i.e. following
"card 4X" for each €, above. The list is made up of NM - sets (word 3,

card 3) and each set contains NP values of M (word 1, card 3). To

illustrate:
) | '
ist last padq ! ' | List of Pad forces
I d Derivatives
(o] ‘ a‘ . ar
Card 4x J "/a(é) */6(5)
Mpad 1 Mpad 2 Mpad 3 Mpad 4
- _ = List of Equivalent
Mpad 5 - M pad NP Pad Masses for MC = -1.
NM sets
Maa1  Mpaa2 ~ 7
- — — - M
_ pad NP ’
2nd Card 1 & Po ¢/c List of Pad Forces
€ | ! ! ' and Derivatives

(continued)
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OQutput Data

The output first repeats the input data for identification and checking
purposes. Then follow the results for each bearing eccentricity ratio.
The text identifying the numerical values is explained below except

where the meaning is obvious:

SOMMERF.NO. - When part of pad results: § = EPE (B2 (putotal force on pad)

When part of bearing results: S= E-Ij‘—lzk(%)z (W=total force on bearing)
F - T = fﬁ
FXI =

- 1/SP, where S, is the pad Sommerfeld Number.

K11,K12,K21,K22 = K;g; K¥q, Kﬂf; Kaa i.e. the 4 spring coefficients for
the fixed pad.
WC11l,WwCl2,WwC21,WC22 = wCEP wC§1,qug,wCﬂq i.e.the 4 damping coefficients
for the fixed pad.
The 8 coefficients are dimensionless in the form:
Kep= ¥ Koy wCp= §why
where F is the total force on the pad. Thus Kll is cal-

culated as:

K1l = Sr[gffrc"szq) ~ cop i@ (e«)fP B'é)“’“f)s‘"(? - 8]

and similarly for the other coefficients, see Eq. (18).
CFM

CRIT.MASS = —-Lr-jiszhexe part of pad results.

(uDL( R,

CWM .
crit
(uDL( R,

rwhere part of bearing results.

11 1 = [} ' L] ]
KD11,KD12,KD21 ,KD22 K{;; 29 Kq;, K77
for the tilting pad.
- ' ' [} '
WCD11,WCD12,WCD21,WCD22 = wC;!,wcfv, wC7;, qu1 i.e. the danping

coefficients for the tilting pad.

i.e. the spring coefficients

The coefficients are dimensionless in the form:

K“- ff CtC.



KXX,KXY,KYX,KYY = Kxx,K

WCXX,WCXY,WCYX,WCYY = wax,mC

DIMENSIONLESS

AMPLITUDE =

PHASE ANG =

CALC. MASS

MASS 1

MASS 2

MASS 3

CRIT. SP.RATIO
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xy’ny’ vy’ i.e. the spring coefficients for
the complete bearing.

xy’wcyx’wcyy’ i.e.the damping coefficients
for the complete bearing.

The coefficients are dimensionless in the form: K,,=\-f-,l'<:,,,
w(y = \-C;,,w?;, etc. where W is the total force on the
bearing. Thus for ims tance Kxx is calculated internally
in the program directly on the basis of the input values
for the pad forces and their derivatives and the final

result is multiplied by the bearing Sommerfeld Number S.

PAD MASS - is the pad mass as defined through MS (word §,
card 3, input).

|q¢$Li.e. the ratio between the actual pad angular amplitude
and the angular amplitude of a massless pad, see Eq. (58).

Hence, the ratio may be thought of as a magnification factor.

ar707,)—ar567,), i.e. the phase angle in degrees between
the angular motion of a massless pad and the angular motion

of the actual pad.

1 Mo A
i gﬁg Four different forms of the dimenionless
§.§7E T pad inertia. For details, see ex-
N2 planation in "Input Data", Card 3,
W7E wWord 6.
Low?__mc
$2 W/C = (uDL,R,2)
@
Mcrit wcrit

M = /w, i.e. the ratio between the resonant

pad frequency ®. and the operating angular journal speed

rit
for the given Sommerfeld Number.



INPUT_FORM FOR

=29~

PNO078: Spring and Damping Coefficients for the Tilting Pad Journal

Bearing.

LBM 1620 Computer, FORTRAN I

Card 1: Text, Col, 2-52

Card 2: Text, Col, 2-52

Card 3: 7 * (I5)

1. NP.
2. NEB.
3. NM.

4. NF.

6. MS

6. NPR

Number of pads, NP £ 12
Number of bearing eccentricity ratios

Number of calculations including pad inertia per
bearing eccentricity ratio. NM £ 12,

If NF = O,input value of £ is pad Sommerfeld number and
input value of ft is horizontal pad force fﬂ . IfNF =1,

fr = f and ft = ft.

If MC = ~1: each pad is given its own inertia
If MC = O: all pads have zero inertia
If MC = +1: all pads have ssme inertia 2
: . . _ 1 MN

If MS = -1: dimensionless pad inertia = S §7E
If MS = 0: dimensionless pad inertia = %%E

. 1 w2 MWC
If MS = +1: dimensionless pad inertia = s2 w/c z;sizg;z)z
If NPR = 0: output does not include results for individgal pads
If NPR = 1l: output includes results for individual pads

List of Pivot Point Angles: 4(E15.7)

Give the position angle, degrees, of the pivot point for each pad, in total

NP ~ values, 4 values per card.




List of Dimensionless Pad Inertia, MC = +1: 4 * (El15.7)
Use this list only when MC = +1. Give the dimensionless pad inertia
(same for all pads) according to value of MS, in total NM - values,

4 values per card:

List of Bearing and Pad Data: 4 (E15.7)

Give NEB-sets of cards. If MC # -1, each set contains (1+3 - NP) cards.

If MC = -1, each set contains (1 + 3NP + MN '~{§2}) cards:

L
&
3

=

fod

*d) o)

Pt

e 9 f &
ok, Py &
o %’E«W&‘})m

%hd) Mod)

—_—— )

[ 3nd
Pad

LAt
Pad

M&dh-- Pad

inertia

- Mp.‘ NP if MG




2nd Bearing Eccentricity Ratio

& ¢ Sk
E P £ &

£ A6 L lst
g{' gfgt 23’?&?‘ Pad

i) %)

EP F )
ofr df dfr O | 2nd
€ o€ ewe_atv Lpzd

) o)

—_—— L 3nd
pad
—_— ) —
— ) — )
o [ 4t4
pad
— g — J
Mot s Meaaz, =~
—_——— Pad
Me.a ne _(2"“‘
. if MCe-1
H?MHMPAJZ'-_ '
- MPAJ vp J



DIMENSION PVA(20)9CS(20)9SN(20) oCSQ(20)9SNQ(20)+CSN(20)9sP(20) -32-
DIMENSION B(B8)sGXX(20)sGXY(20)9GYX(20) 2GYY(20) oHXX(20) sHXY(20)
DIMENSION HYX(20)sHYY{20)9sCMS(20Q)
50 READ 20C
READ 201
READ 202 sNPsNEB sNMoNF yMC sMS9sNPR
PUNCH 203
PUNCH 200
PUNCH 201
PUNCH 204
PUNCH 205sNP sNEB sNMsNF sMC sMS I NPR
PUNCH 206
DO 51 I=1sNPs4
READ 207+sPVA(I)sPVA(I+1)sPVA(I+2)sPVA(I+3)
51 PUNCH 207sPVA(I)sPVA(I+1)9PVA(I+2)sPVA(I+3)
IF (MC) 54454452
52 DO 53 I=1sNMs 4
53 READ 207sP(I)sP(I+1)9P(I142)sP(1+3)
54 DO 55 1=1,8
55 B(I)1=0,0
DO 100 I=1sNP
C2=¢017453293%PVA(])
C1=C0S(C2)
C2=SIN(C2)
CstI)=Cl1
SN(1)=C2
CsSQ(l)=Clx*C]
SNQ(I)=C2%C2
100 CSN(I1)=C2%C1
DO 157 I=1sNEB
READ 208+ECBsATBsCRT
PUNCH 210
PUNCH 209+ECBsATBICRT
BSN=0.0
FH=0.0
DO 120 J=1sNP
READ 207sECPyATPsFRsFTsDFREDFTESDFRASDFTAIDFRSHIDFTS
Cl1=e017453293%ATP
CSP=C0OS(C1)
SNP=SIN(C1)
CSPQ=CsP*CSP
SNPQ=SNP#SNP
CS2=SNP®(SP
ITF(NF)} 101910445101
101 C1=FR
C2=FT
FXI==FR*#CSP-FT#SNP
FT==FR®*SNP+F T#CSP
FR=SQRT(FR®#FR+C2#C2)
IF(FR)103+102+103
102 FR=1.0E90
GO TO 105
103 FR=1.0/FR
GO TO 105
104 FXI==1,0/FR
105 BSN=BSN+FXI®#CS(J)~FT#SN(J)
FH=FH=-FXI*SN(J)=FT#CS(J)
PUNCH 211y J
PUNCH 212
PUNCH 213,ECPyATPWFRyFTsDFRE
PUNCH 214 PNCOT8



106

107

108

109

55

56
517

111

112
113

114

115

PUNCH 2134DFTEsDFRAWDFTASDFRSsDFTS
IF (NF) 10691074106

PUNCH 215

PUNCH 213+sC19C29FXI
Cl=(DFRE+DFTA)#(CS2
C2=(DFTE-DFRA)*(CS2
C3=DFRS*CS?2

C4=DFTS*CS2

IF(ECP)Y 109,108,109
C5=0.0

C6=040

GO T0 110

C5=FXI/ECP

C6=FT/ECP
AXX=DFRE#*CSPQ-DF TA*SNPQ+C2~C6*SNP
AXY=DFRA#CSPQ+DFTE®SNPQ+C1+C6#CSP
AYX==DF TE#CSPQ-DFRA%*SNPQ+C1+C5%*SNP
AYY=-DF TA*CSPQ+DFRE*SNPQ-C2-C5#CSP
C5=2,0#CH5

C6=2.0%#C6
BXX=DFRS*CSPQ+C4~-C5%#S5NP
BXY=DFTS*SNPQ+C3+C5#CSP
BYX=-DFTS*CSPQ+C3~-C6#SNP
BYY=DFRS*SNPQ-C4+CHE*#CSP
IF (AYY) 56455456

C10=000

GO TO 57 )
ClO=(AYY+BYY/AYY#BYY)/39.,478418
CMS(J)=C10.

IF (NPR) 11191124111
Cl=FR*AXX

C2=FR®*AXY

C3=FR#*AYX

C4=FR®AYY

C5=FR#BXX

C6=FR*BXY

C7=FR¥*BYX

C8=FR#BYY

C9=C10/FR

PUNCH 216

PUNCH 2135C1+C25C3,C4
PUNCH 217

PUNCH 213y C5+C63sC7+C8+C9
IF (MC) 119+1134119
Cl=AYYRAYY+BYY®BYY

IF (C1) 115491145115

PUNCH 21844

GO 10 120
C2=AXY#AYX-BXY*BYX
C3=AXYXBYX+AYX*¥BXY
CH=AXX=(AYY*C2+BYY*C3)})/C]
C5=BXX=-{AYY*(3-BYY#C2)/C]
C1=CSQtI)

C2=SNQ(J)

C3=CSN(J)

B(l)=B(1)+C4n(l
B(2)=B(2)+C4%C3

B(3)=8(2)

B(4)=B(4,+C4anC2
B(5)=B(5)+(5%C1
B(6)=B(6)+C5%(C3



B(71=8(6)
B(8)=B(8)+(5%(C2
IF (NPR) 11741184117
117 PUNCH 219+C4sC5
118 GO 10 120
119 GXX(J)=AXX

GXY(J)=AXY
GYX(J)=AYX
GYY(J)=AYY
HXX(J)=BXX
HXY(J)=8BXY
HYX(J)=BYX
HYY(J)=BYY

120 CONTINUE
BSN=140/BSN
IF (MC) 12351219123
121 DO 60 J=1,8
60 B(J)=BSN*BI(J)
PUNCH 220
PUNCH 213sB(1)sB(2)3B(3)sB(4)sB(5)
PUNCH 221
PUNCH 213+8(6)sB(7)sB(8)sBSNsFH
PUNCH 228
DO 158 J=1sNP
C9=CMS(J)/BSN
158 PUNCH 229 JsC9
DO 122 J=1,8
122 B(J)=0.0
GO TO 157
123 DO 156 K=1sNM
IF (MC) 12491269126
124 DO 125 J=1sNP s
125 READ 207sP(J) sP(J+1)sP(J42) sP(J+3)
GO TO 127
126 PM=P(K)
PUNCH 223sPM
127 DO 151 J=1sNP
IF (MC)12851295129
128 PM=P(J)
129 P2=39.478418%PM
IF (MS) 13051315132
130 PC=PZ
P1=PM
P2=BSN*PM
P3=PM/BSN
GO TO 133
131 PC=PZ/BSN
P1=PM/BSN
P2=PM
P3=P1/BSN
GO TO 133
132 PC=PZ*BSN
P1=PM#*BSN
P2=P1¥*BSN
P3=PM
133 AXX=GXX(J)
AXY=GXY (J)
AYX=GYX(J)
AYY=GYY ()
BXX=HXX (J)
BXY=HXY (J)



134
135

136

137

138
139
140
141
142
143
144
145
146
147
148

149
150

160

161
162

BYX=HYX(J)

BYY=HYY(J)

C3=AYY=PC
C4=C3#C3+BYY*BYY

IF (C&4) 13791345137
IF (AYY) 136191355136
PUNCH 218sJ

GO TO 151

PUNCH 222+J

GO TO 151

C1=C3/C4

€2=BYY/C&
C3=10+C1%PC
Ca=C2*PC
ETP=SQRT(C3#C3+C4*C4)
IF (C3) 14691384146
IF (BYY)142+1399142
IF (AYX+BYX) 141+140s141
PUNCH 218yJ

GO TO 151

ETP=0.0

PHA=180.0

GO TO 150

IF (C&4) 14551439144
PHA=040

GO TO 150

PHA=90.,0

GO TO 150

PHA==-9040

GO 70 150

C4=C4/C3
PHA=57295780%ATAN(C4)
IF (C3) 14751509150
IF (C&4) 14851509149
PHA=PHA+180.0

GO TO 150
PHA=PHA-18040
C5==PC*(C3

C6=PC*C4
CT7=Cl*AXY+C2%BXY
C8=C1#BXY~C2%AXY
GR=AXX~CT#AYX+C8*BYX
GE=BXX-C7#BYX-CB8#AYX
DR=~=PC#C7

DE==PC%*(C8
C3==PC®(C1*AYX+C2*BYX)
Cl==PC#(C1#BYX-C2%AYX)
C8=CMS(J)/BSN

IF (P3) 16191601161
C9=1.0E+09

GO TO 162

c9=C8/P3

PUNCH 211y J

PUNCH 224

PUNCH 213 9GRsDR9C3+C5+GE
PUNCH 225

PUNCH 2139DEsC4sC69ETPPHA

PUNCH 226

PUNCH 213sPCsP1sP2,4P3
PUNCH 227

PUNCH 2139 CB8sC9



151

152
153
154

155
156
157

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
27
228
229

C8=CSN(J)
Cl=(DR+C3)%C8

C2=(DE+C4)*C8

CT=(GR=C5)%(C8

CB=(GE-C6)%*(C8

AXX=CSQ (D)

BXX=SNQ(J)

Bl1)=B(1)+GR¥AXX+CS5#BXX=C1

B(2)=B(2)+DR*¥AXX-C3*#BXX+C7

B(3)=B(3)+C3*#AXX-DR*BXX+C7

B(&4)=B(4)+C5%AXX+GR*¥BXX+C1

B(5)=B(5)+GE*AXX+CE#BXX~C2

B(6)=B(6)+DE*AXX=C4#BXX+C8

B(7)=B(7)+C4*AXX=-DE*BXX+CS8

B(8)=B(8)+CHE*AXX+GE*BXX+C2

CONTINUE

IF (BSN) 15291544152

DO 153 J=1+8

B(J)=BSN*B(J)

PUNCH 220 ’

PUNCH 213sB(1)sB(2)eB(3)sB(4)eBI(5)

PUNCH 221

PUNCH 213+B(6)sB(7)+sB(8)sBSNsFH

DO 155 J=19s8

B(J)=0e0

CONTINUE

CONTINUE

STOP

FORMAT (49HO s 3H )
FORMAT (49HD » 3H )
FORMAT (I5+15915915415915415)

FORMAT (49H1PNOOT78 SPR-DAMPCOEFFeFOR TILTePAD JURNLeBRGel=1893H=-63)
FORMAT (49HO NePDS NeECC NeMSS FORCE MeINP MeTPE PRT)
FORMAT (1XI592XI592XI592X1542X1592X15+2X15)

FORMAT (19HOPIVOT POINT AMGLES)

FORMAT(E15e¢79E15e7sE15e79E15e7)

FORMAT(E15eT79E15e73E1567)

FORMAT (9H BRGeECC=9El4eT912H ATTeANG=9E144799H CP/C=sElGeT)
FORMAT (2HO /20HOBEARING CALCULATION)

FORMAT (11HOPAD NUMBERSsI3)

FORMAT (4XBHECCeRAT« 7TXTHATTeANG5 X1 OHSOMMERF « NOBX3HF=T9X6HDFR/DE)
FORMAT(2X E12e592X E12¢592X E12e¢592X E12e592X E1245)

FORMAT (5X6HDFT/DEBXTHDFR/EDATXTHDFT/EDAGXBHDFR/DE/WOXBHDFT/CE/ W)
FORMAT (7TX2HFR12X2HFT12X3HFXI)

FORMAT (TX3HK1111X3HK1211X3HK2111X3HK22)

FORMAT (6X4HWC1110X4HWC1210X4HWC2110X4HWC228X9HCRIToMASS)

FORMAT (18HOMOTION OF PAD NOesI3sl4H INDETERMINATE)

FORMAT(6H KD11=E124596X6HWCD11=E1245)

FORMAT (2HO /1H 6X3HKXX11X3HKXY11X3HKYX11X3HKYY10X4HWCXX)

FORMAT (6X4HWCXY1O0X4HWCYX1OX4HWCYYHX11HSOMMERF ¢« NOo4X10HHORIZ «FRCo)
FORMAT (33HORESONANCE WITHOUT DAMPINGsPAD NO»I3)

FORMAT (24HODIMENSIONLESS PAD MASS=9E12e5)

FORMAT (6X4HKD1110X4HKD1210X4HKD2110X4HKD2210X5HWCD11)

FORMAT (6X5HWCD129X5HWCD219X5HWCD22TX9HAMPL I TUDESX9HPHASE ANG)
FORMAT (4X9HCALCeMASSEX6HMASS 1BX6HMASS 28X6HMASS 3)

FORMAT (4X9HCRITeMASS2X13HCRITaSPeRATIO)

FORMAT (9X7THPAD NOe2X9HCRITeMASS)

FORMAT(8XI593XE12e5)

END
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COMPUTER PROGRAM PNO131: INTERPOLATION OF
PARTIAL ARC BEARING FORCE DERIVATIVES FOR
USE IN TILTING PAD BEARING CALCULATIONS



APPENDIX B

Computer Program PNO131l: Interpolation of Partial Arc Bearing

Force Derivatives for Use in Tilting Pad Bearing Calculations

In order to calculate the spring and damping coefficients for the
tilting pad journal bearing it is necessary to know the force deri-
vatives of the pads making up the complete bearing. Since these
derivatives are calculated numerically in a computer by finite
difference methods they are usually only available for a limited
number of eccentricity ratios. When the pad is incorporated in

the tilting pad bearing its eccentricity ratio is determined by

the bearing eccentricity ratio (see Eq. (B6)) and it, therefore,
becomes necessary to know the force derivatives at other eccentri-
city ratios than the ones for which calculations have been per-
formed. It is rather costly and impractical to obtain this data

by performing additional calculations with the finite difference
computer program and instead interpolation of the existing data

can be employed. It has been found that to do this manually (by

curve plotting) is time consuming. Hence, a computer program has

been written for the purpose of performing the interpolation. The
computer program accepts as input a list of the force derivatives

as computed from the finite difference program (i.e.PNO091, Appendix C).
In addition the number of pads and their position must be given. Then
the computer program calculates the force derivatives for each pad for
a specified number of bearing eccentricity ratios. The output can be
used directly as input for the tilting pad bearing program (i.e. PN0O78,
Appendix A).

Analysis

The interpolation is based on quadratic curve fitting. Let the function
to be interpolated be denoted q which is given for a number of discreet

eccentricity ratio values by the input. Then:

2
(B1) = Aile-¢) +B;(e-€) + g £ £ E2 £ia)




where:
A = a; (9in-9i) -3 (gi-4:.)
(82) i A+a,
a (., +
(B3) B( = Al(‘}m A)+A2 (Qc q«-:)
b= €-¢€r 8, &y - &

Thus, for each €-interval, except the first and the last, q is

determined by two equations. The average value is used:

(B4) ¢=%[A;(f-s;)’+B;(e-s;)+q; + An (e £.-,) +B., (i) + 9, ,]

There are nine functions to be interpolated. Since they all (except
the attitude angle) become infinite when €=l it is found necessary
to normalize the functions before interpolation takes place. The

normalization is chosen as follows:

E<ES €4l No normalization

81
(BS) £, gf{'gg) is divided by (j—g2]*
462, Normalization usedt | f, 32, 8 is didel by Tei®e
ofe

T £ _
an ) g?); s divided luj [
Here £, and £, are the first and last eccent¥icity ratio, respectively,
in the input list. €. 1is specified by the input as described later.

Let the tilting pad bearing have m pads whose pivot points are located
the angle 7}/ from the vertical, measured in the direction of rotation.

Then the eccentricity ratio of any pad is determined by:
CI
(B6) E(o$¢ = |- c — & (oJ('l,V‘%)

where €, 1is the bearing eccentricity ratio, % is the bearing
attitude angle, U'z) is the preload, £ is the pad eccentricity ratio and
? is the pad attitude angle. The input specifies &o,@, ¢ and 'u/

and (/7 is given as a function of € in the earlier mentioned input list.



Thus, E<O$99 can be calculated from the input list and by inter-
polation Eq. (B6) can be solved to find € for each pad. With £
determined the 8 force parameters can be calculated by interpolation

using Eq.(B4) and (BS).

Input Data

The program is written for the IBM 1620 computer, 40K memory storage,

with input and output punched on cards.

Card 1
Descriptive text, Column 2 to 52

Card 2
5 + (1X14)

Word 1 (NEP) gives the number of pad eccentricity ratios for which the

force derivatives are provided in the pad data list. NEP £ 15,

WOr& 2 (LM) gives the value of L as used in Eq.(B5). If the pad
eccentricity ratios in the pad data list are §,,§, -~ £, then the

pad data are divided by a scale factor internally in the program for

€2 €., Since the scale factor is zero for &£=0 it has been found
necessary to set the scale factor equal to 1 for E%& ., In the
determination of L the most critical parameter is E%; which is usually
negative for e< .5, Hence, it is suggested to give L such a value

that €., ¥ .5 to .6.

Word 3 (NBE) gives the number of tilting pad bearing eccentricity ratios.
There is no limit to NBE.

Hord 4 (NA) gives the number of pads. NA % 20.

Word 5 (INP) If INP=0, more input data follows the present set of input.
If INP # O, the present set of input is the last set.

QO -.
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Pad Data List
5 « (1XE13.6)

The pad data is usually obtained from a finite difference solution of
Reynolds equation, see Appendix C. The pad forces, force derivatives
and attitude angle are calculated for a number of pad eccentricity ratios
€ ,& ~--&, and supplied as input to the present computer program. For

each eccentricity ratio two cards are given:

First card: 3 (P {,. S_ér 3%)
df

Second card: , %fes j&) g%)%’; at(P

where:

m
1]

pad eccentricity ratio

pad attitude angle

)
]

Fr
{,, = MNDL (R)E , dimensionless radial force
R S
ﬂ = ,MNDL(R/C)z dimensionless tangential force

™
il

radial journal center velocity, sec-1

Here, 4), fr and ﬂ are calculated for the given € at the steady state
position such that the total force passes through the pivot point.

Hence, the pad data list consists of 2 *(NEP) cards (see word 1, card 2).
The list is given in sequence such that §,4€,4---< €.,

List of Pivot Point Angles

5 - (1XE13.6)

This input list gives the values of the angle ']y measured from the vertical

to the pivot point of each pad in the direction of rotation, see Fig. 22.
The angle is measured in degrees. There are (NA)-values in total (word 4,

card 2), 5 values per card,



List of Bearing Eccentricity Ratios

3 - (E15.D)

The position of the journal center with respect to the bearing center
is defined through the eccentricity ratio €, and the attitude angle %
see Fig.22 . €, 1is calculated with respect to the pad clearance

(pad radius minus journal radius) and 47, is in degrees, measured
from the vertical to the line of centers in the direction of rotation.
In the general case (off-center pivot position, unsymmetric arrange-
ment of the pads) a considerable effort is involved in determining @,
but if the pads are centrally pivoted and located symmetrically around
the vertical then (=0

There must be an input card for each bearing eccentricity ratio, in

total (NBE) cards. Each card contains three words:

Word 1 gives the bearing eccentricity ratio &,

Word 2 gives the bearing attitude angle (ﬂ, in degrees

Word 3 gives the ratio C7c where C' is the radius of the pivot
point circle minus the journal radius and C is the pad radius minus

the journal radius.

Qutput Data

The output gives first the values of the input data for identification
and checking purposes. Then follow 6 lines of text describing the
format of the output data and thereafter the numerical values of the
output data arranged as follows (FORMAT 4(El15.7):

Card 1, 2 and 3 -  blank

Card 4 - &, €l

Card la - ‘W,¢£to$¢,¢

Card 2a - lst pad
Card 3a ""dz"" dg“‘/ﬁf’

Card 4a ”'/d(ﬁ) dhe o

Card 1b 1r, etouf 4’ 2nd pad

Card 2b €,9, Fr. t
‘ .
] ]

kg
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Note that two values of the pad attitude angle (P are given. The
first value (i.e. on card la, 1lb etc) is obtained by interpolation

of the pad data list whereas the second value (i.e. on card 2a,2b etc)
is calculated from (f=1‘an"(‘*/ﬁ-). It is the latter value that should
be actually used and by comparison with the first (P-value some in-

dications are obtained of the accuracy of the interpolation.

The output cards can be used directly as input to the tilting pad bearing
computer program (PNOO78, Appendix A) by removing the 3 blank cards in
front of each bearing eccentricity ratio calculation (card 1,2 and 3 above)
and by removing the first card of each pad data output set (card la,lb etc.

above).

Returning to Eq. (B6) it can be seen that geometrical considerations limit
the range of the bearing eccentricity ratio £€ . The program takes care
of this automatically as follows. For a given e.,@,‘?c and |} the right
hand side of Eq. (B6) may be calculated. Denote the result (E(osq))“,‘ .

Three cases may arise:

a) If E,(ostp,é(ftosﬂc‘k‘l, Eq. (B6) is solved by interpolation. Here €,

is the first eccentricity ratio value in the pad data list.

b) If (€cos@)euc < €,cosf, the computer writes: "NO LOAD, PVT. ANG=X.XX,
E % COS(A)=X.XX" indicating that the particular pad, identified by its
pivot angle w has a (E(osﬂwc-value less than the lowest value in the
pad data list. Strictly speaking there may be solutions in this case
but assuming that €, in general is almost zero it is safest not to allow

extrapolation.

) 1f (€ws@l,2] the computer writes: "E=l, PVT. ANG=X.XX, E * COS(A)=X.XX"
indicating that for the particular pad the journal is either touching

or beyond the pad surface. The calculations proceed with the next pad.
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PUT _FORM_FOR

PNO131: Interpolation of Partial Arc Bearing Force Derivatives for
Use in Tilting Pad Bearing Calculations

IBM 1620 Computer, FORTRAN I

Card 1 (Text Col.2-52)

Card 2: 5(1XI4)

1. NEP: Number of pad eccentricity ratios in pad data
list. NEP £ 15

2. IM: %€ 4. = pad data not normalized
€2 ¢,y = pad data is normalized

}see Eq. (BS5)

3. NBE: Number of bearing eccentricity ratios
4. NA: Number of pads,NA € 20

5. INP: 1If INP=0: more input follows. If INP#0, last
set of input.

Pad Data List: 5(1XEl13.6)

Give 2 cards per pad eccentricity ratio, in total 2 -+ NEP cards:

5;4’: 6’; gérlﬁ"
k, %‘J%I%‘b’lg{’f

-— -

—f -

- —




Pivot Point Angles: 5(1XE13.6)

Give the position angle (degrees)of the pivot point for each pad,
in total NA-values, 5 values per card:

Bearing Eccentricity Ratio: 3(El15.7)

Give one card per bearing eccentricity ratio, in total NBE cards:

{
& , Qo , </l

. ~-|)+‘530

ool



49

47

48

50

51

52

55

56

DIMENSION P(11s15)sPN(11915)9A(11915)9B(11015)sPA(20)+Q(11)
READ 101

READ 102sNEPLMsNBESNAINP
PUNCH 100

PUNCH 101

PUNCH 104

PUNCH 103sNEPsLMsNBEsNASINP
PUNCH 107

DO 47 I=1+20

PA(1)=040

DO 48 I=1,911

Q(I)=040

DO 48 J=1915

A(lsJ)=0e0

B(lsJ)=0e0

PtIsJ)=0.0

PN(1+J)=0e0

KM=LM+1

NM=NEP-1

DO 55 J=1sNEP

PUNCH 108y J

DO 50 1=19645

READ 109sP (19 J)sPlI+1sJ)sP{1423J)sPLI430J)sP(1+4,4J)
PUNCH 109sP (I sJ)sP(I4+19J)sPl14+29J)sP(I+34J)sP(I+4,4J)
Cl=P(1sJ)

C2=P(24J)

C2=4017453293%(C2

C2=COSF (C2)

P(llsJ)=C1%C2

IF(J=LM) 55951451
C2=140-C1%C1

C3=C1/7C2

C4=SQRTF(C2)

C4=C3/Cs

C2=C3%*(C3

DO 52 1=345
PN(IsJ)=P(IsJ)/C2
PNUI+34,J)=P(1+3,J)/C4
PN(9sJI=P(99J)/C3
PN(109J)=P(104J)/C3
PN(29J)=P(29J)

CONTINUE

PUNCH 110

DO 56 1=19NAsS

READ 1099PA(I)sPALI+1)sPA(LI+2)sPA(I+3)1sPA(]+4)
PUNCH 109sPA(I)sPA(I+1)sPA(I+2)sPA(I+3)9sPA(I+4)
PUNCH 113

PUNCH 114

PUNCH 115

PUNCH 116

PUNCH 117

PUNCH 118

DO 65 1=2510

Y2=P(1s1)

Y3=P(]s2)

X2=P({1ls1)

X3zP(1s2)

DO 65 J=2+NM

Yi=Y2

Y2=Y3

X1=x2

PNO131



60
61

62
64

65

66

201

n02
203

204
200

205

206

207

xX2=X3

X3=P{leJ+1l)

IF(J=KM) 60461462
Y3z=P(1sJ+1)

GO 1O 64

Y1=PN(]lsLM)

Y2=PN(] sKM)
Y3=PN(]sJ+1)

DT1=X2~X1

DT2=X3-X2

Cl=Y2-Y1

C2=Y3-Y2

C3=X3-X1

C4=DT1/DT2
AlloJ)=(C2%¥C4-Cl)/7{DT1%#C3})
B(leJ)=(C2%C4+C1/C41/C3
CONTINUE

Y2=P(1ls1)

Y3sP({1+s2)

X2=P(11,1)

X3=P(11+2)

DO 66 J=2sNM

Yil=Y2

Y2=Y3

Y3=P(1lsJ+1l)

X1=xX2

X2=X3

X3=2P(11sJ+1)

DT1=X2~X1

DT2=X3~X2

Cl=Y2-Y1

C2=Y3~Y2

C3=X3-X1

C4=DT1/DT2
AllsJ)=(C4¥*¥C2-C1)/7{(DT1%*C3)
BlleJ)=(Ca®*C2+C1/C4)/C3
DO 239 K=1sNBE

READ 1053EBsATBCPC
PUNCH 112

PUNCH 105+EBsATBsCPC
ATR=4017453293%ATB

DO 238 L=1sNA

PAN=PA (L)
PAR=4017453293%#PAN
ECS=COSF{PAR~-ATR)
ECS=1.0-CPC~-EB*ECS
IF(P(11s1)=ECS) 20292054201
PUNCH 119sLsPANLECS

GO TO 2138

IF(1s0~-ECS) 20342034204
PUNCH 120sLsPANSECS

GO TO 238

IF(ECS=P{11sNEP)) 206+200+200

KC=NEP

GO TO 209

KC=2

GO 10 209

DO 208 J=2sNEP
Cl=P(11yJ)

IF(ECS=C1) 207+207+208
KC=J

47-

J



208
209

210
211

212
213

220

221
222

223
224

225
226

227
228

229
230
231
232

233
234

GO TO 209

CONTINUE

AR=A(1+KC)
BR=B(14KC)
CR=P(1+KC)
XR=P(11sKC)

KL=KC=1

AL=A(1+KL)
BL=B{1sKL)
CL=P(1sKL)
XL=P(11sKL)
C1=E£CS=-XR
C1=CR+C1#*#(BR+C1#AR)
C2=ECS-XL
C2=CL+C2*(BL+C2¥%AL)
IF(KC=2) 21042105211

€2=C1

GO 70 213

IFINEP-KC) 21292124213
C1=C2

EP=(C1+C2)/240
C2=1e0-EP*EP
C3=gP/C2

C4=SQRTF (C2)
C4=C3/C4

C2=C3*C3

DO 234 1=2+10
AL=A(IsKL)
BL=B(1sKL)
XL=P{1sKL)
AR=A(1sKQC)
BR=B(1+KC)
XR=P(1+sKC)

IF (1-2) 220+220,+221
Cl1=140

GO 10 226

IF (1=5) 22242224223
C1=C2

GO TO 226

IF (1-8) 22442244225
Cl=C4

GO TO 226

Cl1=C3

QR=EP-XR

QR=QR* (BR+QR*AR)
QL=EP-XL

QL=QL* (BL+QL*AL)

IF (KC=LM) 22752274230
QR=QR+P ( 1+sKC)
QL=QL+P( 1,KL)

IF (KC=2) 22992294233
QL=QR

GO TO 233
QR=C1*#{QR+PN(IsKC))
IF (KC=KM) 22892284231
QL=C1*(QL+PN(IsKL))
IF (KC=NEP) 23342324232
QR=QL
QUIN1=(QR+QL) /240
CONTINUE

C2=Q(3)
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235
236

237

238
239

240
100
101
102
103
104
105
106
107
1¢8
109
110
111
~12
113
114
115
116
117
118
119
120

IF (C2) 23692354236

C1=Q(2)

GO T0 237

Cl=ATANF(Q(6)/C2)

C1=57e¢295780#%#C1

PUNCH 1119 PANSECS»Q(2)

PUNCH 1069 EPsCl9C24+Q1(6)

PUNCH 106s Q(4)9Q(7)9Q(9)9Q(10)

PUNCH 106y Q(5)9+Q(8)

CONTINUE

CONTINUE

IF (INP) 24044945240

STCP

FORMAT (49H1PNOL131-INTERPOLATION OF PARTeARC DATA JelLUND 8=-993H=63)
FORMAT (49HO s 3H )
FORMAT(1X14s1XI4s1XI4e1XIGs1X14)

FORMAT (2X14+6X1496X1496X1446X14)

FORMAT (9HONOCPAD E4XSHLIMIT3AX8HNOeBRGeEIXTHNOCANGeSXSHINPUT)
FORMAT(E15e¢73E15e79E1567)

FORMAT(E15e¢79E15¢79E15e79E15e7) )

FORMAT (49HO0E ATT FR DFRDE DFRDEW FT DFTDE DFTDEW DFREDA DFT+3HEDA)
FORMAT (3HOE(s1291H))
FORMAT(I1XE13e691XE1366s1XEL13e691XE13e631XE1366)

FORMAT (13HOPIVOT ANGLES)

FORMAT(1HO9El4e79E15e79E1567)

FORMAT (//1HQ0)

FORMAT (14HOQUTPUT FORMAT)

FORMAT (8H EPS+BRGSXTHATT«BRGS5X4HCP/C)

FORMAT (38H PIVOT ANG E*COS(A) ATTPAD(INTP))

FORMAT (8H EPSePADSXTHATTPADSX2HFR8X2HFT)

FORMAT(7H DFR/DE6X6HDFT/DE6XTHDFR/EDA3XTHDFT/EDA)

FORMAT (23H DFR/D(E/W) ODFT/D(E/W))

FORMAT (4HOPAD»I2917H NO LOADIPVTeANG=9EL13e¢6910HIE*COS(A)=9EL1346)
FORMAT (4HOPADsI12+13H E=19sPVTeANG=9E13e6910HIE*COS(A)=9EL1346)

END
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ARSTRACT

This report describes the computer program PNOO91:
"Hydrodynamic Incompressible Journal Bearing.' The
program exists in 2 versions, one for the IBM 704
computer and one for the IBM 1620 computer. The re-
port contains a description of the analysis and the
instructions for using the programs. The program
solves the dynamical incompressible Reynolds equation
in dimensionless form by finite difference equations
and gives results for the pressure distribution, the
load and the attitude angle. The rupture of the oil
film is included. The bearing may be full 360° or a

partial arc.



-5li.

INTRODUCTION

The dynamical Reynolds equation is a partial differential equation re-
lating the pressure in the fluid film to the journal rotational speed
and the squeeze film velocity. The film is assumed to be isothermal

so that the viscosity is constant. The equation is used in dimension-

less form and is given as Eq. (4) page 4.

The bearing is taken to be operating in air. Therefore, no oil can
enter the bearing from the ends and the film pressure cannot be lower
than ambient. For this reason the film contracts in the diverging part
of the bearing with a uniform pressure of Pa « This is denoted film

rupture and is taken into account.

Reynolds equation is transformed into finite difference form and solved
by iteration. The convergence of the iteration process is established
in two ways, one in which the relative difference between two iterations
is checked against a preassigned error and one which compares the result
of each iteration against an extrapolated value, i.e., a form of absolute

convergence.

The program provides for the calculation of force derivatives with respect
to eccentricity ratio and the two squeeze film velocity components. Such
derivatives are needed in computing spring and damping coefficients for the

bearing.

I1f desired the program will iterate on the attitude angle in order to de-

termine the attitude angle corresponding to no horizontal force component.






ANALYSIS

NOMENCLATURE

C Diametrical clearance, inch

D Journal diameter, inch

F Force, lbs. ‘
fr’ft Radial and tangential force components, dimensionless, see Figure 1.
fv,fh Vertical and horizontal force components, dimensionless, see Figure 1
h Dimensionless film thickness

i,j Finite difference coordinates, axial and circumferential, see Figure 2.
k Iteration number

L Bearing length, inch

m Number of circumferential subdivisions,see Figure 2

n Number of axial subdivisions, see Figure 2

N Journal speed, RPS

P Dimensionless pressure (Qbove ambient)

R Journal radius, inch

S Sommerfeld number

t Time, seconds

UI’UZ Journal and bearing surface speed, inch/sec.

X,z Circumferential and axial coordinates, dimensionless

Yy Sum of all pressures after the k'th iteration, see Eq. (10)

Yxeo Extrapolated pressure sum after the k'th iteration, see Eq. (11)
a Attitude angle, degrees

a Tangential speed of journal center, rad/sec.

5A Absolute convergence limit, see Eq. (12)

BR Relative convergence limit, see Eq. (9)

Ak Error in absolute convergence, see Eq. (12)

AR Error in relative convergence, see Eq. (9)

€ Eccentricity ratio

€ Radial speed of journal center, sec

-] Circumferential angular coordinate, see Figure 1.

n Viscosity, lbs-sec/in2

W Angular speed of journal, rad/sec.



For an incompressible lubricant Reynolds equation 1is:

Wfﬂ f‘[lz,u ] =+ &ru) + g"c-l

To make dimensionsless set:

. Z P
(2) x=-é- Z:% k:%—‘. P:fm—(s—)r

Furth : - -
urthermore U," TDN U2 =0
Also set:
£
(3) h=4 + 3 cos(e-o)
where o = _g_ = 2x

Under isothermal conditions p is constant and the dimensionless Reynolds

3 ¢ . , '
h f‘E] = IZN['E; cos(e-d)"'(%."g')ﬂn(e-d)]
The corresponding finite difference equation is:

(5) _-,p{ i’ R, .,,..+ j(a)z [M,, Ra,)t ﬁ:-i y R..,,]‘l?ﬂu’[f;cos(ei)dr(f;oa-'-%)sy,(e.‘)]h
v By + ey + T CEI[Ry * Ry
u ‘.;]’f L A'l l'#* ) l-t J

equation becomes:
o K[PEI+WE

where the finite difference mesh is as follows:

3 &) az ¢
(me1) .

I

I

| da |

i K]

3 &

2 b

Pp {
23 -————?Lﬂ) )

Figure 2.



* The pressure at the bearing end is ambient (i.e.0). At the leading and
the trailing edge it is given by the input (partial arc only). At the
besaring centerline there is symmetry. Thus the boundary conditions to
Eq. (5) become:

R,=0
E“Lj' &w
© Py ad Por (o), 15237 -= (0o purtil are
A
Ptml ¢ 0°_beari

Pt Cinput) , 22,3, ~(n+l)  partial arg
Pes Au_bo__&m‘ " beayj
I¥ (Pt';j)nuuu‘o  then Ry=0

The pressure is initially set equal to zero and Eq. (5) is then solved

Rowi

by iterations.
The load carrying capacityis calculated from:

W e
(7) f -—ZLJ Pcos(o-a) dxdz = —2ax: Ang (os(%-d)

ut
(8) = 2 r] Psinle-w) dxdz = ZM-AZZ Sm(o.‘

L

The indicated summations are computed by Simpson rule of integration, i.e.
*A[P.‘MP;*?P;"“&" — = ==1  and if either m or n are odd the first
interval {s integrated by %a[5P+8B-R] . 1In sddition end corr-
ections are made at the boundary to the ruptured film.

Ltsxstion Convergence and Extgspolation

The convergence of the pressure iteration is tested by two methods, which
shall be denoted relative convergence and absolute convergence. The re-
lative convergence is tested as follows: after the k'th pressure iteration
compute:



(9) Z.Z ! P‘f;)"":'”' S = A
- (0 = O T Q,
32 R

where 63 is given by the input. When AR becomes zero or negative then

relative convergence has been achieved.

To compute the absolute convergence the following criteria is chosen.,
After each iteration the sum of the pressures are computed. Let the re-
sult for the k'th iteration be denoted:

N %

Assume that after infinitely many iterations this sum will be ljk.,

and set: 8
-8k
Y = Yyoo — Ae (A and B constants)
from which:
™ )2
(11) Yo = Yo T 2 Y™ Yoz ~ Y

Yeeo is calculated after each iteration (exceptions, see later) and the

absolute convergence is computed from:

, Ykeo -Hkl - =
(12) ™ 8 = B,
where AA is given by the input. When AA becomes zero or negative

absolute convergence has been achieved.

In order to obtain complete convergence, both relative and absolute con-
vergence must be satisfied. Equations (9), (11) and (12) are printed as
output after each iteration. Eq. (1l) serves an additional purpose, namely
to extrapolate the pressure distribution. When Y, becomes a smooth curve
and starts to level off then a new extrapolated pressure distributlon is
calculated from

(13) p(.d, = ‘ﬁ: P:,,
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and the pressure iterations proceed from this new distribution either
until convergence is achieved or until Yy, again becomes sufficiently

smooth that Eq.(13) may be used once more.

It remains to define the criteria for "smoothness'. As applied to Eq.(ll)
Hk-o is not calculated for the first 2 iterations or for the 2 itera-
tions following a pressure extrapolation. In these cases the computer

output shows:

14
S AA = .0

Furthermore, Yy, 1is not calculated if the Yy -curve is aot monotoneliy

increasing with decreasing gradient, i.e.:

) (24w “Ya =Y ) > 0 } Yoo Ly ¢$=(")
(15) b (y, ~y,,) 2 '0-"% Ap by :q.(IZ)

a) ké&e } (k- kutnp.m.-..\) <2 ) 18

b} (ngﬁ—yk-l-gk) £0 (ﬁ(" = 'O

(16 ¢ (2%-' “Yur =4 ) =0, (Yy,., ) #0 ( Ap=10
d/ (ng ~ly-2-Y) >0, (Uk“‘!«-n)éo §
o/ ( (™ “UYy-2 ~y)= 0, ( Ye=Yuy) =0 l Ykeo = Y

17)
b) lem h Vw.z"‘h) >0 / 04(%-,4“)4 ,o-"‘jos Ap = 0.0

Graphically:

y=3 LR,

Y ho. iterations: k

‘8imilarly, Eq. (13} is not applied until Yy 1is 'smooth'". Basicaily
this is determined by the input item 6gx which specifies how small the
relative difference between two consecutive Yoo must be for extrapola-
tion to be performed. In addition the Yyee "CUrve must be increasing.

Hence, the criteria for extrapolation becomes:



a) 0 ‘(_Hs.-_o.-_-_:ﬁm:_)aa“

‘!m,-.
(18) ) o;(ﬂ%ffm:)‘d"
¢) A, ¥ 10

d/ k 24 ) (k -kdb‘pcldiou)a 4

When these equations
are satisfied Eq.(13)
is performed, othervise
not.

These Equations (15) to (18) are all used in the 704-version of the

program. In the 1620-version Eq. (18,a) is not included and ng in

Eq. (18,b) is built into the program, given the value ng=.005 . Further-

more, in Eq. (16) q,,,--lo" is replaced by Yye

= 'oqo
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input

The input form is shown on page 17 . Below follow the instructions for
preparing the input.

Card 1 and 2

These are heading cards to be used for identification and must always be
given. Punch text in column 2 to 72 (2 to 52 in 1620 version).

Card 3
L/D Ratio This is the ratio between bearing length and journal diameter.
Inlet Angle @in . This is the angle in degrees measured from the vertical

reference line to the leading edge of the bearing pad in the direction of

journal rotation., For a full 360° bearing © {n &Y be any value as long
o

as Oy —6;, = 360 .

Outlet Angle. ©ous This is the angle in degrees measured from the
vertical reference line to the tralling edge of the bearing pad in the dir-
ection of journal rotation. In a full 360° bearing ©Ogt may be any
value as long as Oout =6 =360°,

Inlet Pressure P;n This is the dimensionless pressure along the lead-
ing edge of the bearing pad. If the actual pressure is P psig, then

p =P

Thus, for ambient pressure P,,,=o + In the finite difference represen-
tation the pressure along the leading edge is set equal to P:,, except
at the end of the bearing (i=1l) where the pressure is ambient.

Card &

w This is the dimensionless pressure along the trail-
ing edge of the bearing pad. For comments, aee above.

Wﬂt&_é&_ This limit determines when relative con-

vergence has been achieved i.e. when the relative difference between two con-
secutive pressure ‘iterations is less than Jp . For details, see Eq. (9)
page 6 .  A.typical value is J,t.OOl or ,002

ezl



Absolute Convergence Limit JA This limit determines when absolute
convergence has been achieved, i.e. when the difference between a given
pressure iteration and the corresponding extrapolated final value be-
comes less than dk . For details, see Eq. (12), page 6. A typical
value may be 6A= .002 to .005, 1t should be noted that absolute con-
vergence is much more strict than relative convergence i.e. dk should

be 2 or 3 times greater than dﬁ for consistency. Hence, dk=.002

is rather small, especially if the mesh has many points (150 to 200 and
more). Considering that 4A=.002 means an absolute accuracy of .2 per-
cent which in most cases is much finer than needed, and also that the
method of solution is approximate anyway, dk should not be made any
smaller than actually needed. The number of pressure iterations increases
rapidly with decreasing d, and for most practical cases JA=.OO§ should

give sufficient accuracy.

Relaxation Factor for Pressure Calculation 4} In order to increase

( or decrease) the rate of convergence of the pressure iterations a re-

laxation factor may be used. To illustrate assume that in the k'th itera-
k)

tion the pressure Rﬂ has been computed from Eq. (5) for any meshpoint.

d
Then the actually stored value is not RM but

(-1} (k) {1
Pfr) - P‘)J +f’(P"d —P".J )

Hence, f}>| will accelerate the convergence and ‘p" will decelerate
the convergence. Setting ﬁ,=| results in no relaxation. It should be
noted that the program includes an additional feature for speeding up the
calculation, namely the pressure extrapolation given by Eq. (13). If ex-

trapolation is desired it is questionable if relaxation should also be used.

Caxd 5

1. Number of Circumferential Subdivisions.m As shown in Figure 2, the

circumferential length of the bearing is subdivided into m increments
Ax = 180 m . Thus the number of meshpoints in the circumferential
direction is (mtl).

2. Number of Axial Subdivisions. n As shown on Figure 2, the bearing half-

length is subdivided into n increments AZ=3%3p . Thus the number of mesh-
points in the axial direction is (n+l).

3. Full or Partial Bearing If this item is O the program assumes that the
bearing is full 360° such that the pressure along the leading edge is equal



to the pressure along the trailing edge with a continuous gradient. Hence,
item 4, Card 3, and item 1,Card 4, are ignored.
If this item is 1 the program assumes that the bearing is partial arc.

4. Number of Pressure Iterations In order to ensure that the computer
does not use an excessive amount of time to meet the convergence limits
this item sets a limit for the maximum number of pressure iterations.

If this number is exceeded the computer gives the results obtained up
to this point.

5. umber of £-d~Input Frequently the load and other quantities are

wanted as a function of eccentricity ratio € keeping other parameters such

as L/D ratio and arc length the same. The prcgram provides for giving as
many values of £ a3 desired and the present item specifies how many cases
there are, i.e. how many of Card 6 (cr of palrs of Card 6-Card 7).

6. Input Control If this item is zero the program will return after com-
pleted calculation to read in an additional input set. If this item is 1
the program assumes this to be the last input set and will go to normal
stop after completed calculation. Note, that this of course does not refer
to the above mentioned E-d~input which is regarded as a part of an input
set. An input set starts with Card 1.

7. EKEIQEQLlSLQB_LiﬂLLLJQHL (704-version only). After each pressure
iteration, say the k'th, all pressures are summed up. Denote the sum Ye -
Based on 3 consecutive values of Yy an exponential extrapolation is

used to calculate the value of the sum after infinitely many iterations,
denoted UYyee . When the relative difference between three consecutive
values of Yyeo 1is less than J‘x an extrapolation of the pressure dis-
tribution is performed by multiplying each pressure by g”ﬁ/y* . For
details, see Eq. (13) and (18), page 6amé. A few remarks are needed. It
is obvious that the intention of the extrapolation is to speed up the con-
vargence of the pressure iteration but it is difficult to ascertain that
thie is always the case. VWhen the absolute convergence limit Jk is not
too tight the extrapolation may reduce the number of iterations by more
than 50 percent but when d, 1is small it is more difficult to evaluate
the effect. After an extrapolation the pressure distribution is no longer

in "equilibrium" and this reflects clearly in the pressure sums Y, and

~6l -



very strongly in the extrapolated sums Y., . In general Uy, will be
decreasing right after an extrapolation such that Uy, cannot be computed
and therefore is given the arbitrary value 1038 (1090 in 1620-verson) in

the output . After a certain number of iterations ¢, will slowly start to
increase again and, when smooth enough, a new extrapolation will be perform-
ed, repeating the cycle. When dk is small and the number of meshpoints is
large these cycles may be rather long which tends to reduce the benefit of
the extrapolation. If it is not desired to extrapolate, set d}x-o.o. If

extrapolation is desired, an example of its value is d}x" .005.

Card 6

There should be as many Card 6 as given by item 5, Card 5. Each Card 6
with MATT=+1 (item 5 below) should be followed by a Card 7.

Eccentricity Ratio, €  This is the ratio between the journal eccentri-

city and the radial clearance, see Figure 1.

Attitude Angle, ol This is the angle in degrees measured from the

vertical reference line to the line of centers (i.e. the line connecting
bearing and journal centers) in the direction of rotation, see Figure 1.

Radial Squeeze Film Velocity, %ﬁu This is the dimensionless velocity

of the journal center along the line of centers, see Figure 1. However, if
item 5, Card 6, is MATT=-1 then this 1tem means A(ou) for use in calcula-
ting force derivatives with respect to -i

Targential Squeeze Film Veloc1t1,e°%» This is the dimensionless velocity

of the journal center perpendicular to the line of centers, see Figure 1.
MAIT If MATT=-1 a Card 7 must be given. The program will perform a number
of complete pressure calculations, changing the attitude angle in order to
make the horizontal force component zero., Thereafter an additional 4 complete
calculations will be performed to calculate /65 and f/d(é.)

1f Matt=0 no Card 7 is required. Only one complete calculation will be per-
formed based on the input value for the attitude angle.

If MATT=+1 a Card 7 is required after Card 6. The program will iterate on the
attitude angle in order to eliminate the horizontal force component. However,

force derivatives will not be computed.
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Card 7

Card 7 can only be given when MATT=+1{ (see item 5 above)

Eccentricity Ratio Increment A€ When MATT=+1 this item is not used.
When MATT=-1 A€ is used in computing the derivatives with respect to €.
Upon completion of the attitude angle iterations the program proceeds to
calculate the change in bearing load as a function of £ , keeping all other
parameters constant. Denoting the original eccentricity ratio &, (item 1,
Card 6) the program performs calculations for €E=§,+A€ and for €=€~-AE,
Hence, the results may be used to calculate a‘/de = A‘/?AC

Convergence Limit for Attitude Angle Itegatiog,&. J* is in degrees and

determines when the attitude angle iteration has converged. After the k'th
iteration the program computes the value of the attitude angle as

d(k'l)= ‘tan"(f* /{r)
If 'd(h"-o(wl & J,( the calculation has converged (or if item 4 below is
exceeded) and the program proceeds to calculate derivatives. Otherwise a
new trial value of & is determined as described below and a new calculation
is performed. A typical value is c&:.Olc
Relaxation Factor for Attitude Angle Iteration &_ As described above, a

new pressure calculation is performed when ld\m""dml)d‘ . This new calcula-
tion is based on an ®-value determined as follows: the first calculation
uses the original value for & (item 2, Card 6). The two next calculations use
dk+| = o‘(n)_._ fd.(d(lr-n)_d(k))
Any additional calculations uses an @ -value determined by parabolic inter-
polation. 'f‘ is actually a function of eccentricity ratio, L/D-ratio, bear-
ing geometry etc. It usually has a maximum around € =.5 where ﬁ'—'— 2.5 to 3.
In general, use ﬂ =10, to 1.5.
Maximum Number of Attitude Angle Iterations This item limits the number of
attitude angle iterations so that an excessive number of iterations is not per-
formed even if convergence has not been obtained. Normally 5 to 6 iterations
are needed if J‘ =.01°.
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Output

The output is in general self-explanatory. First come the two heading cards
followedby 3 or 4 lines listing the input. Thereafter the convergence of the
pressure iteration is printed as a list with 6 columns. The first column
gives the number of the iteration, the second column is A' from Eq. (9).
the third column is A, from Eq. (12), the fourth column is Y from Eq.(10),
the fifth column is the extrapolated sum Yy from Eq. (11) or from Eq. (15)
to (17) and the sixth column gives a count of the number of iterations after
last pressure extrapolation. In the 1620-version column 5 ard 6 are inter-
‘changed. Note, that for convergence Apand A, must be zero or negative.

Next follows the pressure distribution listed as:

____lnd.i.n.’,_tdu_____.l

|

|
I ’

tra;l; 2 |
)
J

rotation
! _leads -u ) |
L: |
r L k
L eatig el |

1
The output format provides for a maximum of 7 columns. Hence, if (n+l) ex-

ceeds 7 the pressure field is broken up as shown above., The last line gives
the dimensionless radial force component f, (Eq.(7)), the tangential force
component 'Ft (Eq.(8)), the vertical force component ‘fv » the horizontal force
component ﬁ‘ , the total force ﬂ““ , the Sommerfeld Number S and the cal-
culated attitude angle K d¢se where:

fy = ‘ZL S:fcose dedz = frose +F sing

= QY Psino dxdz = —f, sina + 3 cose




Hence, to convert the dimensionless force £ to actual force F;

FemDLNE ¢ . b

Similarly, the actual pressure P in psig is obtained from the dimensionless
pressure P by

- 2
pP= ,«LN(?)'P psig
Computer Opergation

The input is on cards. In the 704-version the output is given on Tape 3,
which isthe only tape used by the program. Upon completion of calculation
Tape 3 is given an "End of File", but not rewound, and the computer stops
with 777778 in the address field. The stop is at 33618. The program is
compiled with part of LSTG's TOP-system, i.e. senseswitch 1 and 2 downT
The 1620-version is written in FORTRAN I, both input and output is on
cards.

Computer Time

The two most important factors in determining the computer time is the
number of meshpoints m x n and the absolute convergence limit 6A

Whereas, it is difficult to evaluate the effect of the latter, it is
approximately correct to state that the computer time is proportional to
(m x n)2. This is due to two contributfons: a) for each iteration the
fime is of course directly proportional to the number of meshpoints. This
time may be estimated from: 3

1000 mesh point calculations (i.e.of Bd ) per 5 seconds,
b) the number of iterations needed for convergence increase: approximately
proportional to the number of meshpoints. Example: for 6A = ,002 and
6EX = ,005 the average number of iterations 1is:

No. iterations time
mxn=12 x 6 46.6 17 seconds
mxn= 16 x 6 65 31 seconds

mxn= 36 x 10 Approx.200 6 minutes



The first two numbers are averaged over several values of ¢ . It should
be noted that € also affects the number of iterations. As an example,
take the same conditions as above. Then:

mxn=1l2x6 mxn= 16 x 6
No. iterations No iterations
€ =.1 44 70
€= .2 48 75
€= .4 54 74
€= .6 47 55
e= .8 31 55

From the above both computer time and number of iterations may be

estimated.



INPUT FOR PNOO91 (IBM 704)
SSIBLE JOURNAL BEARIN

Card 1. Text, Col. 2-72:

Card 2. Text, Col. 2-72:

Card 3
(1P4E15.7)
et e E — - _ L/D -Ratio
_— e, ——— - E - - — ein’ Inlet Angle,degrees
— e . e — - E — — eout’ OQutlet Angle,degrees
_— o - o - o —— E o - — Pin’ Inlet Pressure, dimensionless
Card 4
(1P4EL15.7)
— o - e - — - E _ _ _ Pout’ Qutlet Pressure, dimensionless
- — e ———— E — — — 6R’ Relative Convergence Limit
—_— - — - —— E _ — JA’ Absolute Convergence Limit
et - o e - E _ _ _ fP’ Relaxation Factor for Pressure
Calculation.
Card 5

(615,1PE15.7)

.t e - —a E-.__

7.

1. m, Number of Circumferential Subdivision (m & 200)

2. n, Number of Axial Subdivision on Half length (n & 100)
3. 0: Full 360° Bearing 1: Partial Arc Bearing

4. Maximum Number of Pressure Iterations

5. Number of £~d-Input

6. 0: More Input sets follow 1: Last Input set

d;x, Extrapolation Limit

-



=Tls

Card 6
(1P4E15.7, 15)

€ , Eccentricity Ratio

ol , Attitude Angle, degrees

et e e e e - E _ _ _ £ , Radial Squeeze Film Velocity,dimensionless

________ E — - ﬁé » Tangential Squeeze Film Velocity,dimensionless
MATT, -1: Attitude Angle Iteration + Force Derivatives

0: Single Calculation
+1: Attitude Angle Iteration, no Derivatives

Caxd 7
(1P3E15.7, 15)
Only {f Card 6, item 5, MATT=+1

A€ , Eccentricity Ratio Increment for %

_— . e ——— = - E - o

Convergence Limit for Attitude Angle Itera-
-t E--- &> 8 ti.on,sdegreea.

. E —— - f. , Relaxation Factor for Attitude Angle ‘I:Eera-
on
Maximum Number of Attitude Angle Iterations.

Note: An Input Set consists of Card 1 to Card 5 plus as many pairs of Card 6-
Card 7 as given by item 5, Card 5.



Q‘LQ_L. Text, Col. 2-52:

HYDROD

72

INPUT FOR PNOO91 (IBM 1620)
C INCOMPRE LE JOURNA

Card 2. Text, Col. 2-52:

I

N P W N

Card 3

(1XEl4.7, 1XEl4.7, 1XEl4.7, 1XEl4.7)

Card 4

L/D -Ratio
ein’ Inlet Angle, degrees
eout’ Outlet Angle, degrees

P. , Inlet Pressure, dimensionless
In

(1XEl4.7, 1XEl4.7, 1XEl4.7, 1XEl4.7)

_____ E___
_____ E_ — - dR’
_____ E oo dAal
_____ E__- ¥fp

Card 5

Pout’ Outlet Pressure, dimensionless

Relative Convergence Limit
Absolute Convergence Limit

Relaxation Facto. for Pressure
Calculation,

(1X14, 1XI4, 1XI4, 1XI4, 1XI4, 1XI4)
m, Number of Circumferential Subdivision (m & 26)

. Number of €-a-Input
. 0: More Input Sets follow

. n, Number of Axial Subdivision on Half length (n & 12)
. 0: Full 360° Bearing

. Maximum Number of Pressure Iterations

1: Partial Arc Bearing

1: Last Input Set



Card 6
(1XE14.7, 1XEl4.7, 1XE14.7, 1XEl4.7, 1XI4)

€ , Bccentricity Ratio

-t e mm == E e dyrAttitude Angle, degrees

_\‘. _____ R & » Radial Squeeze Pilm Velocity, dimensionless
S SN % » Tangential Squeeze Film Velocity, "

- MATT, ~-l: Attitude Angel Iteration + Force {a
0: Single Calculation. vBtEbes.

-#1: 'Attitude Angle Iteration, no Deriva-
tives.

card 7
(1XE14,7, 1XE1l4.7, 1XEl4.7, 1XI4)
Only if Card 6, item 5, Matt=+l

f
E — . Af , Eccentricity Ratio Increment for 3:
4, » Convergence- Limit for Attitude ‘Angle Itera-
tion, -

€ egrees
ﬂ ,» Relaxation Factor for Attisude Ange nga-
n

_ Maximum Number of Attitude Angle Iterations

Note: An Input Set consists of Card 1 to Card 5 plus as many pairs of
Gard 6~ Card 7 as given by item 5, Card 5.



Th

TABLE 1
% I“ s € a fr ;_:_[ zfi f: :_:_; a_fi ;:_g Sé
& 3
Z}:m 1640.0 .01 84.79 5.5."»(10'5 .00558 .00161 6.09x10"' .0610 0111 -.0601 .00937
159.0 .1 65.00 .00266 .0302 .0257 .00571 . 0645 .0533 -.0514 .0370
70.7 .2 50.81 .00894 0641 0744 011 .0781 .0893 -.0585 0414
.25 1.15  29.5 .35 37.04 .027 .167 .208 .0204 .125 .154 -.0198 .103
12.5 .5 28.17 ,0706 470 542 .0378 . 249 .282 .0226 .183
4,53 .65 21.22 .206 1.75 1.70 .0799 .667 633 187 401
1.06 .8 15.03 .906 12.3 9.22 « 243 3.22 2.28 1.32 1.36
.0459.95 8.34 21,5 1000.0 428.0 3.16 134.0 44.9 64.7 19.9
§O° ARC 476.0 .01 87.38 9.55:10'5 .00979 0131 .0021 “e21 .0177 -.203 .013
45.8 .1 71.23 .00703 ,0799 .0633 .0207 .228 .14 -.194 .0813
20.4 .2 56.84 .0268 ,186 .2 .0410 »275 .268 =171 155
.25 .573  8.63 .35 42.78 .0851 .502 .593 .0787 45 487 -.146 .272
3.76 .5 33.29 .222 1.37 1.56 . 146 .85 .886 -.0874 472
1.44 .65 25.88 .625 4,87 4.92 .303 2.2 1.94 .19 934
.383 .8 19.68 2.46 29,2 24.8 879 9.46 6.0 2.31 .37
.0262,95 12.15 37.3 1410,0 611.0 8.04 217.0 76.0 27.3 12.3
209.0 .01 86.76 2.69:10'1‘ L0274 .0219 .00478 479 .0532 -.467 ,0402
20,3 .1 67.19 .0191 217 .185 . 0454 <505 .381 -.413 .256
9.16 .2 52,14 .067 476 .565 .0862 «597 .669 -.317 443
3.91 .35 38.44 .2 1.2 1.57 .159 .919 1.14 -.139 .761
3.0 .4 35.18 .272 1.61 2.12 .192 1.09 1.37 -.0448 .89
.5 1.15 1.73 .5 29.68 .501 3.17 3.93 . 286 1.73 2.0 165 1,22
951 .6 25.13 ,952 6.76 7.81 447 3.0 3.17 707 1.88 ‘
.678 .65 23.11 1,36 10.6 11.6 579 4.26 4.18 1.26 2,38
.188 .8 17.63 5.06 59.1 53.9 1.61 17.2 12.5 7.48 6.02
.0158 .95 11,79 62.0 2111.,0 1040.0 12,9 365.0 129.0 68.8. 27.7
152.0 .01 86.16 a.zsxm"‘ .0431 .0271 00636 637 .0845 -.623 .0667
15.3 .1 65.0 .0276 .315 .287 L0591 663 .551 -.518 .388
6.97 .2 49.92 L0924 .662 .831 11 W7 .923 ~.359 .643
.75 1.72 3.0 .35 36.65 .267 1.61 2.21 .199 1.16 1.53 -.079 1.03
1.34 5 28,25 656 4.17 5.4 .353 2,15 2,62 459 1.7
.53 .65 22.03 1.75 13.6 15.6 .708 5.2 5.38 2.17 3.24
.15 .8 16.90 6.36 72.5 70.1 1.93 20.3 15.9 11.0 8.08
L0136 .95 11.7 71.9 2360.0 1230.0 14.9 407.0 150.0 9.9 34.6
§Q° ARG 3710 .01 87.85 1.01:10'1' .0105 ,0248 +00269 « 269 0167 -.2% 0124
35.8 1 72.11 00859 .0981 .0876 0266 .289 173 -.246 .0923
, 16.0 .2 58,45 .0327 .228 .25 ,0533 .352 326 =224 .178
.25 .477 6.79 .35 44,56 .105 +612 . 740 .103 «564 ,603 -.191 .13
3.01 .5 35,0 .272 1.66 1.94 .19 1.07 1.08 -.11 .533
1.19 .65 27.76 .746 S.71 5.98 .393 2.7 2.28 226 .96
333 .8 21.67 .79 31.6 28.8 .1 11.5 6.94 2.18 2.17
,0269 .95 13.11 39.1 1440,0 620.0 9.11 266.0 81.7 20,0 9.39



TABLE I (Cont.)

75

- - -
3% ¢ ady ¢

60° ARC 1470 .0l 87.33 3.18x10°% .0327  .0452 .00682  .683  .0597  -.659  .044
(Cont'd) 4., .1 68.43  .0259 .295 .261 .0655 .73 .52 -.591  .336
6.42 .2 539 L0918  .647 .764 .126 85 917 -4 584
5 .955 2,77 .35 40,26 .276 1.6 2.12 ,233 .29 1.8 -.266 963
1.25 .5 31.38  .684  4.21 5.3 417 241 2,73 Jd66 1,58

502 .65 26,84 1.81  13.4 15.4 .836 S.7 s 143 2.85

149 .8 19.54 6.3 68.8 68.5 2.25 1.8 15.9 8.6  6.32

0143 .95 12,78 68.0 21500  1110.0 15.4 394.0  141.0 47.0 231

103.0 .01 87.17 4.78x10°%  .049  .0543  .00968 .969 0935 -.941  .0686

10.1 .1 66.49  .039% 452 .61l L0901  1.01 792 -.806 .45

4.6 .2 SL32 .13 967 1.05 A7 17 1.3 -5 922

J5 143 2.0 .35 38.09  .393 2,32 3.2 308 176 2.2 -.182  1.46
913 .5 29.69 951 5.85  7.75 562 3.15 3.8 567 2.3

373 .65 23.55  2.45 18.2  21.9 .07 7.33 7.6 2,72 4.18

JA15 .8 18,36 8,25 8.3 93.2 .77 26.6 20.4 13.7 9.1

.0121 .95 12.68 80.3  2420,0 1320.0  18.1  440.0  166.0 63.5  30.1

80°aRc 90.7 .01 87.91 4.02x10™% 0429 137 .01l 1.1 L0621 -1.03 .08
8.79 .1  71.31  .0365 .42 431 108 117 .79 -.951 .435

3.99 .2 57.35  .135 .95 1.16 211 137 1,38 -.796 .788

S5 .16 1.76 .35 43.94 .4l 2.3 ERT) 395 2,05 2.3 <512 1.28
.821 .5 35.14  .995  5.76 7.85 201 3.61  3.95 0626 1.9

.351 .65  28.81 2.49  17.4 22.0 1.37 831 7.52 1.82 2.99

116 .8 23.33 7.94  78.8 80.2 3.42 284 20.6 5.86 5.47

.013 .95 14.27 74.5 2220.0 1140.0 19.0 433.0 154.0 24.4 15.0
57.4 .01 87.73 6.92x10°% 073 179 L0176 1.76 .1l -1.65 .0931

5.61 .1 68.76  .0645  .745 738 .166 1.81 1.29 -1.45 .849

2.57 .2 S4.47  .226 159 2.01 316 2,08 2.26 1.1 1.44

.75 1.07 1.15 .35 41.37 .65 3.1 5.28 576 3.01 3.73 - 488 2.2
901 .4 38,17  .873  4.85 7.08 686 3.49  4.39 <211 2.%

546 .5 33.0 1.5 8.87 12.5 998 5.21 6.13 622 3.3

321 .6 28.89 2.73 17.2 23.4 1.5 8.4 8.9 2.2 4.46

26 .65 27,27 371 26,9 33.4 1.92 11,1 11.3 3.5 5.19

.0832.8 22,50 11.1  103,0 116.0 4.6 36.4 217 11.2 8.87

.0108 .95 14,29 89.8  2480,0 1370.0  22.9 492.0 186.0 31.6 2.2
45.5 .01 87.46 9.73x10-6 .102 .203 .022 2.2 171 -2.09 .155

4.46 .1 67.49  .0859  .989 979 .207 2,27 1.72 -1.78 1.18

2.06 .2 52.84  .293  2.06 2.69 387 2.56  2.93 -1.25 1.96

1.0 1,43 .931 .35 39.89  .826  4.67 6.86 689 3.61 4.71 - 329 2.9
488 .5  31.90 1.9 10.8 15.8 1.18 6,13 7.58 1.15 4.33

.20 .65 26,33 4.48  29.5 4.1 2.22 13.2 13.7 4.98 6.66

.0712 .8 21.98 13.0  118.0 139.0 5.25 41.3  32.4 15.6 n.1

.00992 .95 14,29 2640.0 1490.0  26.9 514.0 202,0 3.2 %.7

97.7
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Fig. 1 Six 50° Tilting Pads, Centrally pivoted, L/D = 25,
L/B = .573, C'/C = 1. Load between pads. No pad
intertia.
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L/B = 1,146. Vertical rotor. Effect of pre-load (1-C'/C).
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NOMENCLATURE

C

¢

G, Gy, Cyx Cay
G G, Cor
c;fl c!‘% c‘;! 'q?
D

e

€

F

R, R

F}') Fﬂ

f

LA

b,y

I

Ko, Keg Ky Koy
Koy Ko, Kog, Kny
K;f; K;:,,K;;,K,',
L

M

Mcn‘t

Z

x o
N

Pad clearance (radius of curvature of pad minus journal radius)inch.
Pivot circle clearance (radius of pivot circle minus journal radius)
Bearing damping coefficients, lbs.sec/in. taeh
Fixed pad damping coefficients, lbs.sec/in.

Tilting pad damping coefficients, lbs.sec/in.

Journal diameter, inch

Journal center eccentricity with respect to pad center, inch
Journal center eccentricity with respect to bearing center, inch
Load on pad. lbs.

Radial and tangential components of pad load, lbs.

Components in f and tv-direction of pad load,lbs (see Fig. 22)

= F/Avo, dimensionless pad force

Radial and tangential components of dimensionless pad force
Components in § and /7-direction of dimensionless pad force
Transverse mass moment of inertia of shoe around pivot, lbs.in.sec2
Bearing spring coefficients, lbs/in.

Fixed pad spring coefficients, lbs/in.

Tilting pad spring coefficients, lbs/in.

Bearing length, inch

= I/R2P, equivalent pad mass, lbs.sed/in

Value of equivalent pad mass to cause pad motion resonance, lbs.sec/in
Rotational speed of journal, RPS

Coefficients defined by Eq. (31) and (32)

Journal radius, inch



Radius from pad center to actual pivot point of pad, inch
= (uUNDL/W) - (R/C)% bearing Sommerfeld number

= (UNDL/F) - (R/C)z’pad Sommer feld number

Bearing load, lbs,

Coordinates of journal center with respect to the bearing,
See Fig. 22, inch

e/C, eccentricity ratio with respect to the pad center

= eo/C, eccentricity ratio with respect to the bearing center
Amplitude for pad center motion, see Fig. 22, inch

Amplitude of the center of a massless pad, inch.

= (pRL/ﬂ)-(R/C)2 bearing coefficient

Lubricant viscosity, lbs.sec./in2

Coordinates of journal center with respect to the pad, see Fig.22
inch

Attitude angle with respect to the pad load line, radians
Attitude angle with respect to the bearing load line, radians
Angle from vertical (negative x-axis) to pad pivot point, see Fig. 22

inch
Angular speed of shaft, radian/sec.



